Elucidating the physical mechanisms of membrane fission
阐明膜裂变的物理机制
基本信息
- 批准号:9192596
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Automobile DrivingBindingBinding ProteinsBiologicalBiological AssayC-terminalCell divisionCell physiologyCellsCellular biologyClinicalCrowdingDefectDiabetes MellitusDiseaseDynaminEndocytosisEnsureEnvironmentFamilyGuanosine Triphosphate PhosphohydrolasesHumanHydrophobicityIn VitroKnowledgeLengthLifeLipidsMediatingMembraneMembrane ProteinsMetabolismMissionModelingN-terminalNatureOutcomeOutcomes ResearchPhysiologicalPlayProcessProteinsPublic HealthQuantitative MicroscopyReportingResearchRoleSiteSpecificityStructureSurfaceSystemTestingThinkingTubeViralWorkbasebiophysical toolsconstrictiondensitydisabilityepsinepsin 1improvedinnovationlive cell imagingmutantnervous system disordernovelnovel strategiespathogenpressurepreventquantitative imagingresearch studytooltrafficking
项目摘要
Project Summary. The separation of membranes into discrete compartments through the process of
membrane fission is essential for diverse cellular processes ranging from cell division to viral entry. While the
specialized fission machine dynamin is well-known to induce fission through constriction of membrane tubes,
recent evidence shows that other proteins drive fission by previously unknown mechanisms. In particular, the
epsin 1 N-terminal homology (ENTH) domain is a potent driver of membrane curvature (Ford et al., Nature
2002), and has recently been shown to play a role in membrane fission. Specifically, a recent report proposed
that insertion of a wedge-like amphipathic helix by ENTH curves and destabilizes membranes, as evidenced by
decreasing membrane fission ability among ENTH mutants with decreasing helix hydrophobicity (Boucrot et al.,
Cell 2012). However, our group recently showed that collisions among dense, membrane-bound ENTH
proteins generate steric pressure, which drives membrane bending in the absence of helix insertions
(Stachowiak et al., Nature Cell Biology 2012). These results prompted us to ask: is steric pressure also
responsible for membrane fission by ENTH? In my preliminary studies, I found that ENTH mutants with
reduced helix hydrophobicity are capable of driving fission to a similar degree as wild-type ENTH when bound
to the membrane at comparable density. Interestingly, I also found that full-length epsin, which contains a bulky,
intrinsically-disordered C-terminal domain, drives fission more potently than the ENTH domain alone. These
results imply that, while helix insertions are important for binding proteins tightly to membrane surfaces, helices
are not required for fission. However, once bound to the membrane surface at sufficient density, bulky
molecules of arbitrary structure can create steric pressure that increases membrane curvature until fission
occurs. Taken together, my findings reveal a novel mechanism for membrane fission. The objective of the
proposed research is to quantitatively compare this new mechanism with other key mechanisms of membrane
fission. The first specific aim will delineate the specific roles of wedge-like helix insertion and protein crowding
in driving membrane fission. The second specific aim will examine how dynamin works cooperatively with helix
insertion and protein crowding to drive robust fission. The third specific aim will utilize quantitative imaging of
live cells to examine how helix insertion and protein crowding modulate fission dynamics in a physiological
context. This work will create innovative biophysical tools for the simultaneous study of membrane fission and
protein-lipid interactions both in vitro and in live cells. The overall outcome of this research will be a deeper
understanding of the physical mechanisms of membrane fission, including the novel mechanism of membrane
fission by protein crowding. The bold hypothesis described here asserts that any membrane-bound protein can
contribute to fission, an idea that will influence understanding of diverse membrane compartmentalizing
processes, including endocytosis, cell division, and viral entry.
项目摘要。通过以下过程将膜分离成离散的隔室:
膜分裂对于从细胞分裂到病毒进入的各种细胞过程是必不可少的。而
众所周知,专门的裂变机发动蛋白可以通过膜管的收缩来诱导裂变,
最近的证据表明,其他蛋白质通过以前未知的机制驱动裂变。特别是
胰蛋白酶1 N-末端同源(ENTH)结构域是膜弯曲的有效驱动力(福特等人,性质
2002),并且最近显示在膜裂变中起作用。特别是,最近的一份报告提出,
插入一个楔形的两亲性螺旋的ENTH曲线和不稳定的膜,证明了
在具有降低的螺旋疏水性的ENTH突变体中降低膜分裂能力(Boucrot等人,
Cell 2012)。然而,我们的研究小组最近表明,致密的、膜结合的ENTH之间的碰撞,
蛋白质产生空间压力,在没有螺旋插入的情况下驱动膜弯曲
(Stachowiak等人,Nature Cell Biology 2012)。这些结果促使我们问:空间位压是否也
负责ENTH的膜分裂?在我的初步研究中,我发现ENTH突变体
当结合时,降低的螺旋疏水性能够驱动分裂至与野生型ENTH相似的程度
以相当的密度附着在膜上。有趣的是,我还发现,全长epsin,其中包含一个庞大的,
本质上无序的C-末端结构域,比单独的ENTH结构域更有力地驱动裂变。这些
结果表明,虽然螺旋插入对于将蛋白质紧密结合到膜表面是重要的,
不是裂变所必需的。然而,一旦以足够的密度结合到膜表面,
任意结构的分子可以产生空间压力,增加膜曲率,直到分裂
发生。总之,我的发现揭示了膜分裂的一种新机制。的目的
拟议的研究是定量比较这种新机制与其他关键机制的膜
裂变第一个具体的目标将描绘楔状螺旋插入和蛋白质拥挤的具体作用
来驱动膜分裂。第二个具体目标将研究发动蛋白如何与螺旋协同工作
插入和蛋白质拥挤来驱动强大的裂变。第三个具体目标将利用定量成像,
活细胞来研究螺旋插入和蛋白质拥挤如何在生理学上调节裂变动力学。
上下文这项工作将创造创新的生物物理工具,同时研究膜裂变和
在体外和活细胞中的蛋白质-脂质相互作用。这项研究的总体成果将是一个更深层次的
了解膜分裂的物理机制,包括膜分裂的新机制
通过蛋白质聚集进行裂变。这里描述的大胆假设断言,任何膜结合蛋白质都可以
有助于裂变,这一想法将影响对不同膜区室化的理解
过程,包括内吞作用、细胞分裂和病毒进入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilton Thomas Snead其他文献
Wilton Thomas Snead的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilton Thomas Snead', 18)}}的其他基金
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
- 批准号:
10639551 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Regulatory mechanisms of protein and RNA phase transitions
蛋白质和RNA相变的调控机制
- 批准号:
10319595 - 财政年份:2020
- 资助金额:
$ 3.52万 - 项目类别:
Regulatory mechanisms of protein and RNA phase transitions
蛋白质和RNA相变的调控机制
- 批准号:
9910707 - 财政年份:2020
- 资助金额:
$ 3.52万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
- 批准号:
MR/X00029X/1 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
- 批准号:
2312378 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
- 批准号:
23K06408 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
- 批准号:
10680969 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
- 批准号:
10744556 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
- 批准号:
23K06597 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
- 批准号:
23K05034 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
- 批准号:
2838427 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Studentship
The role of RNA binding proteins in heart development and congenital heart defects
RNA结合蛋白在心脏发育和先天性心脏缺陷中的作用
- 批准号:
10827567 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别: