Mechanisms of cytokinesis and delamination in the cerebral cortices
大脑皮质胞质分裂和分层的机制
基本信息
- 批准号:9791777
- 负责人:
- 金额:$ 5.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adherens JunctionAdhesionsAdhesivesAnencephalyApicalAutistic DisorderBiochemicalBioinformaticsBiologicalBiological AssayBrainBrain DiseasesCell CycleCell Cycle StageCell MaturationCell TherapyCell divisionCell physiologyCellsCerebral cortexChIP-seqComplexCytokinesisDNA Binding DomainDataDefectDevelopmentDevelopmental ProcessDiseaseEmbryonic DevelopmentEpithelialEquilibriumEventExcisionExhibitsFailureFamilyGenerationsGenesGeneticGenetic TranscriptionHome environmentImageLeadLifeLinkMAP Kinase GeneMalignant NeoplasmsMammalsMental RetardationMicrocephalyMitosisModelingMolecularMouse StrainsNatural regenerationNervous System PhysiologyNeurodegenerative DisordersNeurodevelopmental DisorderNeurogliaNeuronsPathologicPathway interactionsPatientsPhasePhosphorylationPhosphotransferasesPost-Translational Protein ProcessingProcessProductionProteinsProtocols documentationPublishingRNARNA analysisResearch ProposalsRoleSchizophreniaSignal TransductionSliceSpecificityStem cellsSurfaceTestingTherapeuticTight JunctionsTissuesTransactTranscriptional RegulationTranslationsVentricularZinc Fingersbasebrain behaviorcognitive taskdaughter cellepigenetic regulationin vivomembermgcRacGAPmigrationnerve stem cellnetwork modelsneurodevelopmentneuroepitheliumneurogenesisnoveloverexpressionpublic health relevancereceptorself-renewalstem cell divisiontraffickingtranscription factortranscriptometranscriptome sequencingtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Neurons and glia, the operating units of the mature brain, are derived from neural stem cells (NSCs) largely during embryonic development. NSCs that give rise to neurons and glia in the cerebral cortex are particularly important to mammals as they ultimately generate the tissue that allows us to perform high-order cognitive tasks. Many neurodevelopmental disorders are caused by abnormalities in molecular and cellular machinery involved in various NSC functions. For example severe disruptions in generation and migration of new neurons can cause microcephaly and anencephaly, whereas milder developmental defects may result in imperfections in connectivity of neurons such as those becoming apparent in Autism spectrum and schizophrenia. The developmental timing of molecular and cellular signals that regulate cortical development are particularly important as temporally distinct insult may impact the cortex, activity in the brain, and behavior differentially. A number of defects associated with mechanisms that impact cytokinesis in NSCs underlie distinct diseases. Therefore understanding how stem cells divide, and what governs changes in their division during the course of brain development and NSC maturation is critical to understanding neurodevelopmental disorders. In the course of cortical development NSCs must maintain an extremely important balance in their cellular divisions. They must first expand their own pool through symmetric divisions, after which they must switch how they divide so that they can generate neurons and glia through asymmetric divisions. The current understanding of cellular and molecular mechanisms that regulate these important divisions remains fragmented and much remains to be discovered regarding master regulators of this process. We recently discovered a novel regulator of this process belongs to a family of zinc-finger specificity protein
transcription factors, called Sp2. We found accumulation of stem cells at the expense of neurogenesis when we deleted the Sp2 gene only in NSCs of the developing cerebral cortex. In contrast overexpression of Sp2 rapidly pushes stem cells to delaminate from their epithelial home in the ventricular surface of the developing cortex, and precociously generate cortical neurons. We have discovered a number of intriguing cell biological themes that underlie the potent effects of Sp2 on NSCs, which we present in our preliminary data. With these findings, we propose to use a combination of state-of-the-art genetic mouse strains, cell and slice culture assays, live imaging protocols, biochemical assays, and mapping of RNA and protein landscapes that are Sp2-depenent to test the central hypothesis that Sp2-dependent transcription regulates the correct balance of proliferation and differentiation by regulating symmetric and asymmetric divisions of NSCs in the developing cerebral cortices. We provide preliminary evidence that Sp2 may carry out this critical function in NSCs through its interactions
with known mechanisms and pathways of cell division. Thus, our study proposes to explore a novel mechanistic model that links molecular machineries that drive cytokinesis with asymmetric division of NSCs for production of neurons in the cerebral cortices. Potential for Broader Impact: Our approaches to understand how cortical stem cells divide symmetrically or asymmetrically have wide implications. Symmetric and asymmetric decisions in various stem cells are key to tissue development and regeneration throughout the body. Disruption of this balance in division of stem cells can lead to a range of pathological conditions from developmental retardation of tissues to oncogenesis. Therefore, undertaking the basic cellular mechanisms that control this key neural stem cell function is critical to understanding not only how appropriate divisions are controlled in stem cells during normal development, but also how their abnormal divisions in pathological conditions lead to devastating diseases such as cancer. Moreover, the mechanisms we study can be harnessed to better define and refine reprogramming strategies for generation of patient-specific stem cells, neurons, and glia and their potential therapeutic application in various brain diseases.
描述(由申请人提供):神经元和神经胶质是成熟大脑的操作单位,主要来源于胚胎发育期间的神经干细胞(NSC)。在大脑皮层中产生神经元和神经胶质的神经干细胞对哺乳动物特别重要,因为它们最终产生允许我们执行高级认知任务的组织。许多神经发育障碍是由参与各种NSC功能的分子和细胞机制异常引起的。例如,新神经元的生成和迁移严重中断可能导致小头畸形和无脑畸形,而轻度发育缺陷可能导致神经元连接的缺陷,例如自闭症谱系和精神分裂症中变得明显的缺陷。调节皮质发育的分子和细胞信号的发育时间是特别重要的,因为时间上不同的损伤可能会影响皮质、大脑活动和行为差异。与影响NSC中胞质分裂的机制相关的许多缺陷是不同疾病的基础。因此,了解干细胞如何分裂,以及在大脑发育和NSC成熟过程中是什么控制其分裂变化,对于了解神经发育障碍至关重要。在皮质发育过程中,神经干细胞必须在细胞分裂中保持极其重要的平衡。它们必须首先通过对称分裂来扩大自己的细胞库,然后它们必须改变它们的分裂方式,这样它们就可以通过不对称分裂来产生神经元和神经胶质。目前对调节这些重要分裂的细胞和分子机制的理解仍然是支离破碎的,关于这一过程的主要调节因子还有很多有待发现。我们最近发现了一个新的调节这一过程属于一个家庭的锌指特异性蛋白
转录因子Sp2。当我们只在发育中的大脑皮层的神经干细胞中删除Sp2基因时,我们发现了以神经发生为代价的干细胞积累。相反,Sp2的过表达迅速推动干细胞从发育中的皮质的心室表面中的上皮细胞家分层,并早熟地产生皮质神经元。我们已经发现了一些有趣的细胞生物学主题,这些主题是Sp2对NSC的有效作用的基础,我们在我们的初步数据中提出了这些主题。有了这些发现,我们建议使用最先进的遗传小鼠品系,细胞和切片培养测定,活体成像方案,生化测定,以及绘制依赖于Sp2的RNA和蛋白质景观图,以检验Sp2-依赖性转录通过调节发育中的大脑中NSC的对称和不对称分裂来调节增殖和分化的正确平衡。皮质我们提供的初步证据表明,Sp2可能通过其相互作用在神经干细胞中发挥这一关键作用。
已知的细胞分裂机制和途径。因此,我们的研究提出探索一种新的机制模型,该模型将驱动胞质分裂的分子机制与神经干细胞的不对称分裂联系起来,以在大脑皮层中产生神经元。更广泛影响的潜力:我们了解皮质干细胞如何对称或不对称分裂的方法具有广泛的影响。各种干细胞的对称和不对称决定是整个身体组织发育和再生的关键。干细胞分裂中的这种平衡的破坏可导致从组织发育迟缓到肿瘤发生的一系列病理状况。因此,研究控制这一关键神经干细胞功能的基本细胞机制,不仅对理解正常发育过程中干细胞如何控制适当的分裂至关重要,而且对理解它们在病理条件下的异常分裂如何导致癌症等毁灭性疾病至关重要。此外,我们研究的机制可以用来更好地定义和完善重编程策略,以产生患者特异性干细胞,神经元和神经胶质细胞及其在各种脑部疾病中的潜在治疗应用。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regulation of cytokinesis during corticogenesis: focus on the midbody.
皮质生成过程中胞质分裂的调节:关注中体。
- DOI:10.1002/1873-3468.12676
- 发表时间:2017
- 期刊:
- 影响因子:3.5
- 作者:Johnson,CarolineA;Wright,CatherineE;Ghashghaei,HTroy
- 通讯作者:Ghashghaei,HTroy
Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet.
- DOI:10.1371/journal.pone.0257426
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Cai Y;Zhang X;Kovalsky SZ;Ghashghaei HT;Greenbaum A
- 通讯作者:Greenbaum A
Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.
- DOI:10.1038/nn.4452
- 发表时间:2017-01
- 期刊:
- 影响因子:25
- 作者:Muthusamy, Nagendran;Zhang, Xuying;Johnson, Caroline A.;Yadav, Prem N.;Ghashghaei, H. Troy
- 通讯作者:Ghashghaei, H. Troy
Foxj1 expressing ependymal cells do not contribute new cells to sites of injury or stroke in the mouse forebrain.
- DOI:10.1038/s41598-018-19913-x
- 发表时间:2018-01-29
- 期刊:
- 影响因子:4.6
- 作者:Muthusamy N;Brumm A;Zhang X;Carmichael ST;Ghashghaei HT
- 通讯作者:Ghashghaei HT
Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage.
- DOI:10.3390/cells9122662
- 发表时间:2020-12-11
- 期刊:
- 影响因子:6
- 作者:Zhang X;Mennicke CV;Xiao G;Beattie R;Haider MA;Hippenmeyer S;Ghashghaei HT
- 通讯作者:Ghashghaei HT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hooman Troy Ghashghaei其他文献
Hooman Troy Ghashghaei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hooman Troy Ghashghaei', 18)}}的其他基金
High Throughput Clonal Analyses of Gliogenesis in Neocortical and Paleocortical areas of the Mouse Brain
小鼠大脑新皮质和古皮质区域胶质生成的高通量克隆分析
- 批准号:
10536298 - 财政年份:2022
- 资助金额:
$ 5.02万 - 项目类别:
Clonal analysis of gliogenesis in the cerebral cortex
大脑皮层胶质生成的克隆分析
- 批准号:
10260078 - 财政年份:2021
- 资助金额:
$ 5.02万 - 项目类别:
Mechanisms of cytokinesis and delamination in the cerebral cortices
大脑皮质胞质分裂和分层的机制
- 批准号:
9134875 - 财政年份:2014
- 资助金额:
$ 5.02万 - 项目类别:
Mechanisms of cytokinesis and delamination in the cerebral cortices
大脑皮质胞质分裂和分层的机制
- 批准号:
9343067 - 财政年份:2014
- 资助金额:
$ 5.02万 - 项目类别:
Transcriptional regulation of aging in the adult neural stem cell niche
成体神经干细胞生态位衰老的转录调控
- 批准号:
8234492 - 财政年份:2010
- 资助金额:
$ 5.02万 - 项目类别:
Development and Application of New Ionization Methods for Biological Mass Spectro
生物质谱新型电离方法的开发与应用
- 批准号:
7981584 - 财政年份:2010
- 资助金额:
$ 5.02万 - 项目类别:
Transcriptional regulation of aging in the adult neural stem cell niche
成体神经干细胞生态位衰老的转录调控
- 批准号:
8197309 - 财政年份:2010
- 资助金额:
$ 5.02万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 5.02万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 5.02万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 5.02万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 5.02万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 5.02万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 5.02万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 5.02万 - 项目类别: