Multi-trait genome-wide characterization of non-traditional glycemic biomarkers and type 2 diabetes

非传统血糖生物标志物和 2 型糖尿病的多特征全基因组表征

基本信息

  • 批准号:
    10358608
  • 负责人:
  • 金额:
    $ 20.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Type 2 diabetes (T2D) and its long-term complications has reached epidemic proportions worldwide. Currently, there are major gaps in the knowledge of T2D genetics and its underlying mechanisms, which is critical for identifying novel therapies and strategies that can reduce the impact of T2D. Genetic studies of clinically relevant biomarkers in relation to T2D, beyond the classical glycemic biomarkers (e.g. glucose, HbA1c, and insulin- related traits), can help us get a wholesome view of T2D mechanisms. There is growing epidemiologic evidence that nontraditional biomarkers of hyperglycemia – fructosamine, glycated albumin, and 1,5-anhydroglucitol – improve risk stratification of diabetes and its long-term complications, provide information beyond the classical glycemic biomarkers, and hold promise in providing unique insights into hyperglycemia and diabetes physiology. A limited number of previous genome-wide association studies (GWAS) have examined genetic determinants of these newer biomarkers using data from the Atherosclerosis Risk in Communities (ARIC) Study. Thus far, ARIC (or any other study) has not been fully exploited to unravel genetic associations of these newer biomarkers or investigate underlying causal mechanisms using more advanced statistical methods that can leverage overlapping genetic architecture of these biomarkers, among themselves and with traditional glycemic biomarkers and T2D taking into account sex-specific differences. In this proposal, we will use modern statistical approaches to exploit the unique data available on these newer glycemic biomarkers, in two major ethnic groups (Black and White) in the ARIC Study to identify genetic associations across the entire allele-frequency spectrum (Aims 1, 3); to explore genetic overlap with traditional biomarkers (Aim 2) and with known T2D-relevant genes (Aims 2, 3); to investigate independent causal role of all biomarkers on T2D by leveraging genetic overlap (Aim 2); and characterize sex-specific and ancestry-specific differences if any (Aims 1-3). We will attempt to replicate our findings in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Our innovations include going beyond the current paradigm of T2D locus discovery using classical biomarkers; novel use of modern multi-trait approaches on existing data; novel follow-up analysis of pleiotropic loci to better characterize underlying causal mechanisms using Mendelian Randomization; use of trans-ethnic analysis to boost GWAS power; and exploring rare variant associations of fructosamine and glycated albumin for the first time. Successful completion of these aims will provide preliminary data for a subsequent multi-omics proposal to study these biomarkers using DNA methylation, proteomic, and whole genome sequence data in ARIC. Thus, our pipeline for systematic examination of unique and shared genetics of these newer glycemic biomarkers with classical biomarkers and T2D can lead to a better understanding of the mechanisms by which they act in concert in delineating T2D risk, and can impact clinical guidelines and diabetes care. Intriguing results from this proposal will encourage other cohorts to do assays of these newer biomarkers that will increase power of future GWAS.
项目总结 2型糖尿病(T2D)及其长期并发症在世界范围内已达到流行程度。目前, 在T2D遗传学及其潜在机制的知识方面存在重大差距,这对 确定可减少T2D影响的新疗法和策略。临床相关的遗传学研究 与T2D相关的生物标记物,超越经典的血糖生物标记物(例如葡萄糖、HbA1c和胰岛素- 相关特征),可以帮助我们对T2D机制有一个健康的看法。有越来越多的流行病学证据 高血糖的非传统生物标志物-果糖胺、糖化白蛋白和1,5-脱水葡萄糖醇- 改善糖尿病及其长期并发症的风险分层,提供经典之外的信息 血糖生物标志物,并有望为高血糖和糖尿病生理提供独特的见解。 以前的有限数量的全基因组关联研究(GWAS)已经检查了 这些较新的生物标记物使用了社区动脉粥样硬化风险(ARIC)研究的数据。到目前为止,ARIC (或任何其他研究)还没有被充分利用来揭示这些较新的生物标志物或 使用更高级的统计方法调查潜在的因果机制,这些方法可以 这些生物标志物之间以及与传统血糖水平之间的重叠遗传结构 生物标志物和T2D考虑了性别差异。在这个提案中,我们将使用现代统计学 在两个主要民族中利用这些新的血糖生物标志物的独特数据的方法 (黑人和白人)在ARIC研究中确定整个等位基因频谱的遗传关联 (目标1,3);探索与传统生物标记物(目标2)和已知T2D相关基因的遗传重叠 (AIMS 2,3);通过利用遗传重叠(AIM),研究所有生物标志物在T2D上的独立因果作用 2);如果有的话,描述性别差异和祖先差异(目标1-3)。我们将尝试复制 我们在青年冠状动脉风险发展(CARDIA)研究中的发现。我们的创新包括 超越当前使用经典生物标记物发现T2D基因座的范例;现代 对现有数据进行多性状分析;对多基因座进行新的后续分析,以更好地表征 使用孟德尔随机化的潜在因果机制;使用跨种族分析来促进全球气候变化 能力;以及首次探索果糖胺和糖化白蛋白的罕见变异联系。 这些目标的成功完成将为随后的多组学提案提供初步数据 在ARIC中使用DNA甲基化、蛋白质组和全基因组序列数据来研究这些生物标志物。因此, 我们为这些新的血糖生物标志物的独特和共享的遗传学进行系统检查的管道 经典生物标记物和T2D可以更好地理解它们协同作用的机制 在描述T2D风险方面,并可能影响临床指南和糖尿病护理。这项提议的耐人寻味的结果 将鼓励其他队列对这些新的生物标记物进行分析,这将增加未来GWAs的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashree Ray其他文献

Debashree Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashree Ray', 18)}}的其他基金

Statistical methods for identifying pleiotropy between complex human traits
识别复杂人类特征之间多效性的统计方法
  • 批准号:
    10646535
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
Methods for leveraging family-based designs and summary data to elucidate complex trait genetics
利用基于家族的设计和汇总数据来阐明复杂性状遗传学的方法
  • 批准号:
    10713748
  • 财政年份:
    2023
  • 资助金额:
    $ 20.47万
  • 项目类别:
Multi-trait genome-wide characterization of non-traditional glycemic biomarkers and type 2 diabetes
非传统血糖生物标志物和 2 型糖尿病的多特征全基因组表征
  • 批准号:
    10215925
  • 财政年份:
    2021
  • 资助金额:
    $ 20.47万
  • 项目类别:

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了