Deep Curation via an Integrated Whole-Cell Computational Model
通过集成的全细胞计算模型进行深度管理
基本信息
- 批准号:10357850
- 负责人:
- 金额:$ 37.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureAreaBacteriaBig DataBiologicalBiological ModelsBiologyCell modelCell physiologyCellsCommunicationCommunitiesComplexComputer ModelsDataData AnalysesData SetDatabasesEnvironmentEquationEscherichia coliFrictionGene Expression ProfileGene Expression RegulationGenerationsGenesGoalsGrowthHeterogeneityIndividualIntuitionInvestigationJournalsKnowledgeLife Cycle StagesLinkLiteratureMathematicsMeasurementModelingNamesNutrientOrganismOutputProcessPublishingReportingResearchRunningScienceScientistSoftware ToolsSource CodeSystemTechnologyTimeUpdateValidationVisualizationVisualization softwareWhole OrganismWorkbasebiological researchcell behaviorcell growthcloud baseddata curationdesignexperimental studyheterogenous datainnovationknowledge curationmodels and simulationnovelnovel strategiesquantumsimulationtool
项目摘要
Research Summary/Abstract
The generation of biological data is rapidly presenting us with one of the most demanding data analysis
challenges the world has ever faced - not only in terms of storage and accessibility, but perhaps more critically
in terms of its extensive heterogeneity and variability. In this proposal, we present a new approach to these
challenges, which we call “Deep Curation”: a large-scale, integrated modeling approach to simultaneously
cross-evaluate millions of heterogeneous data against themselves. The word “deep” reflects the multiple
layers of curation we perform, including layers not only for data, but also for parameters derived from these
data, the mathematical equations, the unified model, and the simulation output. Thus, the deeply-curated
model is an invaluable tool for processing, curating and analyzing data automatically. Our proposed efforts in
Deep Curation are based on a computer model of Escherichia coli that accounts for the function of roughly
40% of the well-annotated genes, and is based on an extensive set of diverse measurements compiled from
thousands of reports (currently in 2nd round of review at Science). The goal of this proposal is to expand this
model to enable Deep Curation of data related to growth on >100 currently-unincorporated environments. We
can then assess the cross-consistency of the data sets simultaneously, as a unified whole, identifying critical
areas in which datasets are not cross-consistent and therefore further experimental investigation is needed.
The Significance of this proposal is that Deep Curation represents a first-in-kind quantum leap forward in our
ability to exploit massively heterogeneous, variable and complex biological datasets; that it automates and
accelerates transformative biomedical discovery; that we will create a bi-directional pipeline between EcoCyc,
the most comprehensive database on any organism, and the most complex biological model in existence; and
that whole-cell modeling is a rapidly-growing field with transformative potential as it advances towards more
complex cells and groups of cells. The Innovation associated with this proposal is that Deep Curation is a
brand-new and highly innovative approach that is not currently available to any other lab in the world; that the
proposed work will produce a dramatically expanded whole-cell model of previously-unseen complexity; as well
as novel and highly innovative modeling technology; that we include explicit curation of knowledge regarding
mechanism in addition to data; and that the automated communication between the EcoCyc database and the
E. coli model will dramatically expand the capacity, scope and visibility of both in a synergistic way. Our
Specific Aims are: Aim 1 (Curation), build the Data and Parameter layers related to E. coli growth on diverse
environments; Aim 2 (Modeling), implement the Equation, Model and Simulation layers; Aim 3 (Deep Curation),
use the integrated model to cross-evaluate the unified data set at the whole-organism scale; and Aim 4
(Distribution), make the model available to the broader community via GitHub (software tools), EcoCyc (data
and parameters), and Google Cloud (simulations and interactive visualizations).
研究总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus W Covert其他文献
Markus W Covert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus W Covert', 18)}}的其他基金
Multi-scale, model-driven exploration of sub-generational gene expression in bacteria: individual consequences, population benefits
细菌亚代基因表达的多尺度、模型驱动探索:个体后果、群体效益
- 批准号:
10298623 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
Multi-scale, model-driven exploration of sub-generational gene expression in bacteria: individual consequences, population benefits
细菌亚代基因表达的多尺度、模型驱动探索:个体后果、群体效益
- 批准号:
10654847 - 财政年份:2021
- 资助金额:
$ 37.11万 - 项目类别:
Deep Curation via an Integrated Whole-Cell Computational Model
通过集成的全细胞计算模型进行深度管理
- 批准号:
10557790 - 财政年份:2020
- 资助金额:
$ 37.11万 - 项目类别:
Deep Curation via an Integrated Whole-Cell Computational Model
通过集成的全细胞计算模型进行深度管理
- 批准号:
10153881 - 财政年份:2020
- 资助金额:
$ 37.11万 - 项目类别:
New methods for monitoring the immune system, in individual cells and in vivo
监测单个细胞和体内免疫系统的新方法
- 批准号:
8537822 - 财政年份:2012
- 资助金额:
$ 37.11万 - 项目类别:
New methods for monitoring the immune system, in individual cells and in vivo
监测单个细胞和体内免疫系统的新方法
- 批准号:
8414128 - 财政年份:2012
- 资助金额:
$ 37.11万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 37.11万 - 项目类别:
Standard Grant














{{item.name}}会员




