Enhance Arthroplasty Research through Electronic Health Records and Nlp-Enabled Informatics
通过电子健康记录和支持 NLP 的信息学加强关节置换术研究
基本信息
- 批准号:10358647
- 负责人:
- 金额:$ 56.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAmericanBioinformaticsClinicClinicalClinical DataClinical TrialsComplexComplicationDataData CollectionData ElementData SetData SourcesDecision MakingDevelopmentDevicesDocumentationElectronic Health RecordEpidemicEvidence based practiceFutureGoalsGoldGuide preventionHealth BenefitHospitalsIndividualInformaticsInstitutionInterventionJoint ProsthesisKnowledgeLogisticsManualsMarketingMedicareMethodsModelingMonitorNatural Language ProcessingObservational StudyOperative Surgical ProceduresPatient-Focused OutcomesPatientsPerformancePoliciesPostoperative PeriodPreventionPrevention strategyProceduresProviderPublishingRegistriesReplacement ArthroplastyResearchRiskRisk FactorsSafetyScientific Advances and AccomplishmentsSourceStructureTechniquesTechnologyTestingTextTimeUnited Statesage groupbasecomputerized data processingcostdata accessdata resourceelectronic dataelectronic structureepidemiology studyevidence basehealth care qualityhealth information technologyhigh riskimprovedindividual patientinfection riskinformatics infrastructureinformatics toolinnovationjoint infectionmodifiable risknovelopen sourceoutcome predictionpatient populationportabilitypragmatic trialpredictive modelingprototypepublic health relevancerisk predictionrisk prediction modelstructured datasurgery outcometoolwillingness
项目摘要
ABSTRACT
Total joint arthroplasty (TJA) is the most common and fastest growing surgical procedure in the
nation. Despite the high procedure volume, the evidence base for TJA procedures and
associated interventions are limited. This is mainly due to lack of high quality data sources and
the logistical difficulties associated with manually extracting TJA information from the
unstructured text of the Electronic Health Records (EHR). Meanwhile, the rapid adoption of EHR
and the advances in health information technology offer the potential to transform unstructured
EHR notes into structured, codified format that can then be analyzed and shared with local and
national arthroplasty registries and other agencies.
We therefore propose to leverage unique data resources and natural language processing
(NLP) technologies to build an informatics infrastructure for automated EHR data extraction and
analysis. We will (1) develop a high performance, externally validated and user centric NLP-
enabled algorithm for extraction of complex TJA-specific data elements from the structured and
unstructured text of the EHR, (2) validate the algorithm externally in multiple EHR platforms and
hospital settings, and (3) conduct a demonstration project focused on prediction of prosthetic
joint infections using data elements collected by the NLP-enabled algorithm. Our overarching
goal is to develop valid, open source and portable NLP-enabled data collection and risk
prediction tools and disseminate them widely to hospitals participating in regional and national
TJA registries.
This research is significant as it leverages strong data resources and expertise to tackle the
pressing need for high quality data and accurate prediction models in TJA. Automated data
collection and processing capabilities will lead to an upsurge in secondary use of EHR to
advance scientific knowledge on TJA risk factors, healthcare quality and patient outcomes.
Accurate prediction of high risk patients for prosthetic joint infections will guide prevention and
treatment decisions resulting in significant health benefits to TJA patients. The research is
innovative because TJA-specific bioinformatics technology will shift TJA research from current
under-powered, single-center studies to large, multi-center registry-based observational studies
and clinical trials. Our deliverables have the potential to exert a sustained downstream effect on
future TJA research, practice and policy.
摘要
全关节置换术(TJA)是最常见、发展最快的外科手术。
国家。尽管程序量很大,但TJA程序和
相关干预措施是有限的。这主要是由于缺乏高质量的数据源和
与手动提取TJA信息相关的后勤困难
电子健康记录(EHR)的非结构化文本。与此同时,电子病历的快速采用
医疗信息技术的进步提供了转变非结构化的潜力
将电子病历记录转换为结构化、编码化的格式,然后可进行分析并与本地和
国家关节置换术登记处和其他机构。
因此,我们建议利用独特的数据资源和自然语言处理
(NLP)技术,以构建用于自动电子病历数据提取和
分析。我们将(1)开发高性能、外部验证和以用户为中心的NLP-
使能的算法,用于从结构化的和
EHR的非结构化文本,(2)在多个EHR平台上外部验证算法,并
医院环境,以及(3)开展以假体预测为重点的示范项目
使用启用NLP的算法收集的数据元素进行联合感染。我们最重要的是
目标是开发有效、开源和可移植的、支持NLP的数据收集和风险
预测工具,并将其广泛传播给区域和国家参与的医院
TJA登记处。
这项研究具有重要意义,因为它利用强大的数据资源和专业知识来解决
TJA迫切需要高质量的数据和准确的预测模型。自动化数据
收集和处理能力将导致EHR的二次使用热潮
增进有关TJA风险因素、医疗质量和患者预后的科学知识。
准确预测人工关节感染的高危患者将指导预防和治疗
治疗决策给TJA患者带来了显著的健康益处。这项研究是
创新是因为TJA特定的生物信息学技术将改变TJA的研究
动力不足的单中心研究到基于多中心注册的大型观察性研究
和临床试验。我们的交付成果有可能对以下方面产生持续的下游影响
未来TJA的研究、实践和政策。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Knee Arthroplasty.
- DOI:10.1016/j.arth.2020.09.029
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Sagheb E;Ramazanian T;Tafti AP;Fu S;Kremers WK;Berry DJ;Lewallen DG;Sohn S;Maradit Kremers H
- 通讯作者:Maradit Kremers H
A Deep Learning Tool for Automated Radiographic Measurement of Acetabular Component Inclination and Version After Total Hip Arthroplasty.
全髋关节置换术后髋臼组件倾斜度和版本的自动放射学测量的深度学习工具。
- DOI:10.1016/j.arth.2021.02.026
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Rouzrokh P;Wyles CC;Philbrick KA;Ramazanian T;Weston AD;Cai JC;Taunton MJ;Lewallen DG;Berry DJ;Erickson BJ;Maradit Kremers H
- 通讯作者:Maradit Kremers H
Deep learning model for measurement of shoulder critical angle and acromion index on shoulder radiographs.
- DOI:10.1016/j.xrrt.2022.03.002
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Shariatnia, M Moein;Ramazanian, Taghi;Sanchez-Sotelo, Joaquin;Maradit Kremers, Hilal
- 通讯作者:Maradit Kremers, Hilal
Neighborhood-Level Socioeconomic Deprivation, Rurality, and Long-Term Outcomes of Patients Undergoing Total Joint Arthroplasty: Analysis from a Large, Tertiary Care Hospital.
- DOI:10.1016/j.mayocpiqo.2022.06.001
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Kamath, Celia C;O'Byrne, Thomas J;Lewallen, David G;Berry, Daniel J;Maradit Kremers, Hilal
- 通讯作者:Maradit Kremers, Hilal
Frank Stinchfield Award: Creation of a Patient-Specific Total Hip Arthroplasty Periprosthetic Fracture Risk Calculator.
Frank Stinchfield 奖:创建针对患者的全髋关节置换术假体周围骨折风险计算器。
- DOI:10.1016/j.arth.2023.03.031
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wyles,CodyC;Maradit-Kremers,Hilal;Fruth,KristinM;Larson,DirkR;Khosravi,Bardia;Rouzrokh,Pouria;Johnson,QuinnJ;Berry,DanielJ;Sierra,RafaelJ;Taunton,MichaelJ;Abdel,MatthewP
- 通讯作者:Abdel,MatthewP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hilal Maradit Kremers其他文献
Hilal Maradit Kremers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hilal Maradit Kremers', 18)}}的其他基金
RISK OF COGNITIVE IMPAIRMENT AND DEMENTIA IN TOTAL JOINT ARTHROPLASTY
全关节置换术中认知障碍和痴呆的风险
- 批准号:
10318585 - 财政年份:2019
- 资助金额:
$ 56.35万 - 项目类别:
RISK OF COGNITIVE IMPAIRMENT AND DEMENTIA IN TOTAL JOINT ARTHROPLASTY
全关节置换术中认知障碍和痴呆的风险
- 批准号:
10743158 - 财政年份:2019
- 资助金额:
$ 56.35万 - 项目类别:
RISK OF COGNITIVE IMPAIRMENT AND DEMENTIA IN TOTAL JOINT ARTHROPLASTY
全关节置换术中认知障碍和痴呆的风险
- 批准号:
10064124 - 财政年份:2019
- 资助金额:
$ 56.35万 - 项目类别:
RISK OF COGNITIVE IMPAIRMENT AND DEMENTIA IN TOTAL JOINT ARTHROPLASTY
全关节置换术中认知障碍和痴呆的风险
- 批准号:
10532748 - 财政年份:2019
- 资助金额:
$ 56.35万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 56.35万 - 项目类别:
Research Grant