Brain Injury Knowledge Ontology (BIKO): Identifying metadata variance in Traumatic Brain Injury therapy studies

脑损伤知识本体 (BIKO):识别创伤性脑损伤治疗研究中的元数据差异

基本信息

项目摘要

Project Summary Traumatic brain injury is a significant cause of morbidity and mortality in the United States, yet there is no approved therapy for this injury. Although several therapies and procedures have been deemed successful for TBI treatment in preclinical research studies, many of these successes did not translate to human studies. One way to examine this challenge is to investigate the methodological variances in the associated literature. This proposal aims to use experimental methods and outcomes used in traumatic brain injury (TBI) therapy papers to create a metric to compare the methodological variance between multiple species by following three aims: 1. Training Phase 1: Establish the Brain Injury Knowledge Ontology (BIKO), a standardized ontology to define experimental design parameters and outcomes. 2. Training Phase 1: Create a knowledge base, BIKO base, of experimental design parameters (methods) and scientific claims (results) from the TBI treatment discovery literature. 3. Training Phase 2: Compare experimental differences hypothesized to lead to distinct outcomes between and across multiple species in TBI studies/literature using the BIKO. Upon completion, this project will provide a clearer understanding of past preclinical TBI therapy success and how it aligns to clinical outcomes to accelerate the discovery of successful therapies for TBI in human patients.
项目摘要 在美国,创伤性脑损伤是发病率和死亡率的重要原因,但没有 这种伤的治疗方法虽然一些治疗和程序已被认为是成功的, 临床前研究中的TBI治疗,其中许多成功并未转化为人体研究。一 检验这一挑战的方法是调查相关文献中的方法差异。这 一项提案旨在使用创伤性脑损伤(TBI)治疗论文中使用的实验方法和结果 通过以下三个目标创建一个度量来比较多个物种之间的方法学差异:1. 培训阶段1:建立脑损伤知识本体(BIKO),这是一个标准化的本体, 实验设计参数和结果。2.培训阶段1:创建一个知识库,BIKO基础, TBI治疗发现的实验设计参数(方法)和科学声明(结果) 文学3.训练阶段2:比较假设导致不同结果的实验差异 使用BIKO在TBI研究/文献中的多个种属之间进行比较。项目完成后, 更清楚地了解过去临床前TBI治疗的成功及其如何与临床结果保持一致, 加速发现人类患者TBI的成功疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MONIQUE SURLES-ZEIGLER其他文献

MONIQUE SURLES-ZEIGLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MONIQUE SURLES-ZEIGLER', 18)}}的其他基金

Brain Injury Knowledge Ontology (BIKO): Identifying Metadata Variance in Traumatic Brain Injury Therapy Studies
脑损伤知识本体(BIKO):识别创伤性脑损伤治疗研究中的元数据方差
  • 批准号:
    10490980
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
Brain Injury Knowledge Ontology (BIKO): Identifying Metadata Variance in Traumatic Brain Injury Therapy Studies
脑损伤知识本体(BIKO):识别创伤性脑损伤治疗研究中的元数据方差
  • 批准号:
    10685323
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了