Illuminating the Druggable Genome by Knowledge Graphs
通过知识图阐明可药物基因组
基本信息
- 批准号:10348825
- 负责人:
- 金额:$ 53.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAloralAmino AcidsAnimal ModelAntineoplastic AgentsAreaBindingBinding SitesBioinformaticsBiologicalBiological ModelsCancer ModelCatalogsCategoriesClinicalCodeComputer AnalysisComputer softwareDataData SourcesDiseaseDocumentationDrug DesignDrug TargetingEmerging TechnologiesEnzymesFDA approvedFutureGene TargetingGenesGenomeGenomicsGoalsGraphHumanHuman GenomeInformation NetworksInformation Resources ManagementInvestigationKnowledgeLibrariesLinkMachine LearningMedicalMedicineMolecular BiologyOntologyOutcomeOutcomes ResearchPathologyPatternPharmaceutical PreparationsPhenotypePhosphotransferasesPilot ProjectsProcessProtein KinaseProteinsPublic HealthPythonsResearchResourcesScientistSemanticsSignal TransductionSystemThe Jackson LaboratoryTrainingValidationanti-cancerbasecheminformaticscomputer sciencecomputer studiescomputing resourcesdark matterdeep learningdesigndisease phenotypedrug discoverydrug mechanismdrug repurposinggene functiongene therapygenome resourcehigh riskhuman diseaseimprovedinorganic phosphateknowledge baseknowledge graphknowledge integrationlearning algorithmmachine learning algorithmmachine learning methodmouse modelnew therapeutic targetnovelnovel drug classopen sourcepatient derived xenograft modelprotein kinase inhibitorprotein kinase modulatorreal world applicationsmall moleculetoolvalidation studies
项目摘要
PROJECT SUMMARY / ABSTRACT
About 1500 of the ~20,000 protein-coding genes of the human genome can bind drug-like molecules, and yet
only about 600 are currently targeted by FDA-approved drugs. Therefore, at least 930 proteins are potential drug
targets that are not yet being utilized for human medicine and, given our incomplete state of knowledge about
the human genome, the actual number could be much higher. There is therefore a substantial unmet need to
improve our understanding of this so-called genomic dark matter in order to develop novel classes of drugs to
improve treatment of disease. Comprehensive experimental investigation of these proteins in the context of
hundreds of thousands of compounds and thousands of diseases would be prohibitively expensive, but
computational approaches could significantly refine the list. In this project we will apply two sophisticated
computational approaches to the task of predicting the most promising novel drug targets. We will integrate the
knowledge bases DrugCentral and other resources with the disease and phenotype knowledge base of the
Monarch Initiative into a semantically harmonized knowledge graph (KG). This will result in a KG with
comprehensive coverage of diseases, genes, gene functions, phenotypic abnormalities, drugs, drug
mechanisms, and drug targets. Machine learning (ML) identifies patterns from training sets and applies the
patterns to predict entities and relations in new data. ML using KGs has become a hot new research area in
computer science, but remains difficult to use for real-world applications, owing to the lack of adequate software
packages. We will therefore implement state-of-the art learning algorithms based on deep learning on KGs by
extending and adapting selected algorithms to the task of drug and drug target discovery. We will develop an
easy-to-use software library and demonstrate its use by means of notebooks that will be designed to serve as
starting points for future computational research by other scientists, since they will contain the analysis workflow
along with documentation about each step. The human genome codes more than 500 protein kinases, which
are enzymes that add a phosphate group to specific amino acid residues and thereby transmit a biological signal.
There are currently 35 FDA approved protein kinase modulators acting on 38 protein kinases, which are thus
one of the most important groups of druggable proteins encoded by our genome. We will perform a detailed
computational study of this group and experimentally validate our top, novel candidate using a patient-derived
xenograft model system.
项目摘要/摘要
在人类基因组的约20,000个蛋白质编码基因中,约有1500个基因可以结合类药物分子,但
目前只有大约600人是FDA批准的药物的靶标。因此,至少有930个蛋白质是潜在的药物。
尚未用于人类医学的靶标,鉴于我们对
人类基因组的实际数量可能要高得多。因此,存在着大量未得到满足的需求
提高我们对这种所谓的基因组暗物质的理解,以开发新的药物类别来
提高疾病的治疗水平。对这些蛋白质的全面实验研究
数十万种化合物和数千种疾病将是令人望而却步的昂贵,但
计算方法可能会极大地完善这份清单。在这个项目中,我们将应用两个复杂的
预测最有希望的新型药物靶点任务的计算方法。我们将整合
知识库DrugCentral和其他带有疾病和表型知识库的资源
君主倡议转变为语义协调的知识图谱(KG)。这将导致KG具有
全面覆盖疾病、基因、基因功能、表型异常、药物、药物
机制和药物靶标。机器学习(ML)从训练集中识别模式,并将
预测新数据中的实体和关系的模式。使用KGS的ML已成为一个热门的新研究领域
计算机科学,但由于缺乏适当的软件,仍然难以用于现实世界的应用程序
包裹。因此,我们将在KGS上实现基于深度学习的最先进的学习算法
将选定的算法扩展和调整到药物和药物靶标发现任务中。我们将开发一种
易于使用的软件库,并通过笔记本电脑演示其使用方法,该笔记本电脑将设计为
其他科学家未来计算研究的起点,因为它们将包含分析工作流
以及有关每个步骤的文档。人类基因组编码了500多个蛋白激酶,其中
是将磷酸基团添加到特定氨基酸残基从而传递生物信号的酶。
目前有35种FDA批准的蛋白激酶调节剂作用于38种蛋白激酶,因此
我们基因组编码的一组最重要的可用药蛋白质。我们将执行一项详细的
对这一组进行计算研究,并通过实验验证我们最好的、新颖的候选对象,使用患者派生的
异种移植模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER J MUNGALL其他文献
CHRISTOPHER J MUNGALL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER J MUNGALL', 18)}}的其他基金
Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
- 批准号:
10611970 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
- 批准号:
10390282 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9161233 - 财政年份:2016
- 资助金额:
$ 53.66万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9357656 - 财政年份:2016
- 资助金额:
$ 53.66万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 53.66万 - 项目类别:
Continuing Grant