Illuminating the Druggable Genome by Knowledge Graphs
通过知识图阐明可药物基因组
基本信息
- 批准号:10348825
- 负责人:
- 金额:$ 53.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAloralAmino AcidsAnimal ModelAntineoplastic AgentsAreaBindingBinding SitesBioinformaticsBiologicalBiological ModelsCancer ModelCatalogsCategoriesClinicalCodeComputer AnalysisComputer softwareDataData SourcesDiseaseDocumentationDrug DesignDrug TargetingEmerging TechnologiesEnzymesFDA approvedFutureGene TargetingGenesGenomeGenomicsGoalsGraphHumanHuman GenomeInformation NetworksInformation Resources ManagementInvestigationKnowledgeLibrariesLinkMachine LearningMedicalMedicineMolecular BiologyOntologyOutcomeOutcomes ResearchPathologyPatternPharmaceutical PreparationsPhenotypePhosphotransferasesPilot ProjectsProcessProtein KinaseProteinsPublic HealthPythonsResearchResourcesScientistSemanticsSignal TransductionSystemThe Jackson LaboratoryTrainingValidationanti-cancerbasecheminformaticscomputer sciencecomputer studiescomputing resourcesdark matterdeep learningdesigndisease phenotypedrug discoverydrug mechanismdrug repurposinggene functiongene therapygenome resourcehigh riskhuman diseaseimprovedinorganic phosphateknowledge baseknowledge graphknowledge integrationlearning algorithmmachine learning algorithmmachine learning methodmouse modelnew therapeutic targetnovelnovel drug classopen sourcepatient derived xenograft modelprotein kinase inhibitorprotein kinase modulatorreal world applicationsmall moleculetoolvalidation studies
项目摘要
PROJECT SUMMARY / ABSTRACT
About 1500 of the ~20,000 protein-coding genes of the human genome can bind drug-like molecules, and yet
only about 600 are currently targeted by FDA-approved drugs. Therefore, at least 930 proteins are potential drug
targets that are not yet being utilized for human medicine and, given our incomplete state of knowledge about
the human genome, the actual number could be much higher. There is therefore a substantial unmet need to
improve our understanding of this so-called genomic dark matter in order to develop novel classes of drugs to
improve treatment of disease. Comprehensive experimental investigation of these proteins in the context of
hundreds of thousands of compounds and thousands of diseases would be prohibitively expensive, but
computational approaches could significantly refine the list. In this project we will apply two sophisticated
computational approaches to the task of predicting the most promising novel drug targets. We will integrate the
knowledge bases DrugCentral and other resources with the disease and phenotype knowledge base of the
Monarch Initiative into a semantically harmonized knowledge graph (KG). This will result in a KG with
comprehensive coverage of diseases, genes, gene functions, phenotypic abnormalities, drugs, drug
mechanisms, and drug targets. Machine learning (ML) identifies patterns from training sets and applies the
patterns to predict entities and relations in new data. ML using KGs has become a hot new research area in
computer science, but remains difficult to use for real-world applications, owing to the lack of adequate software
packages. We will therefore implement state-of-the art learning algorithms based on deep learning on KGs by
extending and adapting selected algorithms to the task of drug and drug target discovery. We will develop an
easy-to-use software library and demonstrate its use by means of notebooks that will be designed to serve as
starting points for future computational research by other scientists, since they will contain the analysis workflow
along with documentation about each step. The human genome codes more than 500 protein kinases, which
are enzymes that add a phosphate group to specific amino acid residues and thereby transmit a biological signal.
There are currently 35 FDA approved protein kinase modulators acting on 38 protein kinases, which are thus
one of the most important groups of druggable proteins encoded by our genome. We will perform a detailed
computational study of this group and experimentally validate our top, novel candidate using a patient-derived
xenograft model system.
项目摘要 /摘要
人类基因组的约20,000个蛋白质编码基因中,约有1500个可以结合类似药物的分子,但是
目前,只有大约600个由FDA批准的药物瞄准的。因此,至少930种蛋白质是潜在的药物
尚未用于人类医学的目标,并且鉴于我们关于
人类基因组,实际数字可能更高。因此,有很大的未满足
提高我们对这种所谓的基因组暗物质的理解,以开发新的药物类别
改善疾病的治疗。在
成千上万种化合物和成千上万种疾病会非常昂贵,但是
计算方法可以显着完善列表。在这个项目中,我们将应用两个复杂的
预测最有前途的新型药物靶标的任务的计算方法。我们将整合
知识基地使用疾病和表型知识基础吸毒和其他资源
君主倡议分为语义统一的知识图(kg)。这将导致与
疾病,基因,基因功能,表型异常,药物,药物的全面覆盖
机制和药物靶标。机器学习(ML)识别训练集的模式,并应用
预测新数据中实体和关系的模式。 ML使用kgs已成为一个热门的新研究领域
计算机科学,但由于缺乏足够的软件,很难用于现实世界应用
软件包。因此,我们将基于对KGS的深度学习实施最先进的学习算法
将选定算法扩展到药物和药物靶标的任务。我们将发展一个
易于使用的软件库,并通过笔记本的方式演示其用途,该笔记本将被设计为
其他科学家的未来计算研究起点,因为它们将包含分析工作流程
以及关于每个步骤的文档。人类基因组代码超过500种蛋白激酶,这是
是将磷酸基添加到特定氨基酸残基并从而传递生物学信号的酶。
目前有35个FDA批准的蛋白激酶调节剂作用于38种蛋白激酶,因此
由我们的基因组编码的最重要的毒素蛋白组之一。我们将执行详细的
该组的计算研究,并通过使用患者衍生
异种移植模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER J MUNGALL其他文献
CHRISTOPHER J MUNGALL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER J MUNGALL', 18)}}的其他基金
Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
- 批准号:
10611970 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
- 批准号:
10390282 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9161233 - 财政年份:2016
- 资助金额:
$ 53.66万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9357656 - 财政年份:2016
- 资助金额:
$ 53.66万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Access-H20: Sensor driven smart faucet to enable and empower independent drinking and grooming for individuals impacted by spinal cord injury
Access-H20:传感器驱动的智能水龙头,使受脊髓损伤的个人能够独立饮酒和梳洗
- 批准号:
10482451 - 财政年份:2022
- 资助金额:
$ 53.66万 - 项目类别:
A Common Dialect for Infrastructure and Services in Translator
Translator 中基础设施和服务的通用方言
- 批准号:
10706761 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
幾何分野における活性化教材の開発とその実証的研究
几何领域活化教材的开发及实证研究
- 批准号:
21K02907 - 财政年份:2021
- 资助金额:
$ 53.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Common Dialect for Infrastructure and Services in Translator
Translator 中基础设施和服务的通用方言
- 批准号:
10330632 - 财政年份:2020
- 资助金额:
$ 53.66万 - 项目类别:
A Common Dialect for Infrastructure and Services in Translator
Translator 中基础设施和服务的通用方言
- 批准号:
10057176 - 财政年份:2020
- 资助金额:
$ 53.66万 - 项目类别: