Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
基本信息
- 批准号:10611970
- 负责人:
- 金额:$ 70.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-10 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnimal ModelAreaBirthCase StudyChildChild CareChildhoodClinicClinicalClinical DataClinical ManagementClinical ResearchClinical assessmentsCohort AnalysisCollectionComplexComputational algorithmComputer AnalysisComputer softwareCouplesDNADNA sequencingDataDatabasesDiagnosisDiagnosticDiseaseEnglandEvaluationFinding by CauseFrustrationGene ExpressionGene MutationGenesGeneticGenetic DiseasesGenetic MaterialsGenetically Modified AnimalsGenomeGenomic medicineGenomicsHealthHumanHuman GeneticsIndividualIntellectual functioning disabilityIntelligenceKnowledgeLaboratoriesLiteratureMedicalMedicineMendelian disorderMethodsModelingMolecularMorbidity - disease rateOntologyPathogenesisPathogenicityPathway interactionsPatientsPediatricsPerformancePhenotypePopulationPredictive ValueProcessPublishingRNARNA SplicingRNA analysisRare DiseasesRecordsResearchResourcesRoleRunningScanningSeriesSpecialistSpliced GenesSymptomsTechniquesTechnologyTestingTimeTissue-Specific Gene ExpressionUnited States National Institutes of HealthVariantVisitcausal variantclinical careclinical decision-makingclinical diagnosticsclinical phenotypecohortcostdiagnostic tooldiagnostic valuedisease diagnosticexomeexome sequencinggene discoverygenetic disorder diagnosisgenome sequencinggenomic datahuman diseaseimprovedmeternew technologynext generation sequencingnovelnovel strategiespediatricianpersonalized managementphenomicsrare genetic disordersupport toolstooltranscriptome sequencinguptakewhole genome
项目摘要
PROJECT SUMMARY
As much as 10% of the population suffers from a rare disease (RD); 80% of these diseases are caused by
gene mutations and up to 75% are present at birth or begin in childhood. Diagnosis of genetic diseases is often
problematic: roughly 25% of RD patients must wait between 5 and 30 years for a diagnosis, and about half of
the initial diagnoses are wrong. For many affected children, definitive diagnosis comes only after a protracted
and frustrating odyssey of visits to different specialists. Emerging genetic sequencing techniques offer the
possibility of shortening this long and costly path to diagnosis. Methods for determining the changes in gene
sequences across all genes (exome sequencing) or all genetic material (genome sequencing), collectively
referred to as Next-Generation Sequencing (NGS), and which were first used to identify the genetic cause of a
disease in 2010, are now becoming routine in the clinic. The ability to make a diagnosis with NGS has more
than doubled since 2010 for children with suspected genetic diseases. The diagnostic analysis of NGS data
involves the assessment of tens of thousands (exome) or even millions (genome) of changes in the DNA
(variants), which requires sophisticated computer algorithms that can sift through these/this data to find the
cause. Our group has developed the Human Phenotype Ontology (HPO), a resource widely used around the
world for the computational analysis of clinical data in human genetics and pediatrics, allowing algorithms to
match the symptoms of a patient with database records of over 7,000 genetic diseases.
Our Exomiser software compares the clinical phenotypes of patients with known human diseases and
genetically modified animal models, and couples this with an analysis of the disease-causing potential of DNA
variants, greatly reducing the search space to identify the causal variant. Exomiser efficiently processes both
exome and genome data. In this proposal, we plan to extend Exomiser to utilize new genomic data types
including long-read genome sequencing and NGS-based analysis of RNA data, which will improve
pathogenicity prediction for structural variants (SVs) and for variants affecting gene expression or splicing. We
will also predict novel disease genes through characterization of networks of clinical phenotypes and the
molecular functions (pathways) of affected genes. We plan to use these algorithms to assess collections
(cohorts) of unsolved cases in projects such as the 100,000 Genomes Project. Our algorithmic approach will
be applied to intelligently reanalyze unsolved cases periodically as new information is added to the medical
literature. And finally, we will develop tools to integrate Exomiser into a large range of settings by adding
support for standards generated by the Global Alliance for Genomics and Health (GA4GH). The proposed
advances will make Exomiser more efficient, more accurate, and easier for non-specialist pediatricians to use,
bringing genomic diagnostics to routine pediatric clinical care.
项目摘要
多达10%的人口患有罕见疾病(RD);这些疾病中有80%是由
基因突变和高达75%的出生时出现或从童年开始。遗传疾病的诊断通常是
有问题:大约25%的RD患者必须等待5至30年的诊断,约有一半
最初的诊断是错误的。对于许多受影响的儿童,只有在持久之后才进行确定的诊断
以及令人沮丧的访问不同专家的奥德赛。新兴的遗传测序技术提供
缩短这一漫长而昂贵的诊断途径的可能性。确定基因变化的方法
所有基因(外显子组测序)或所有遗传物质(基因组测序)的序列,统称
称为下一代测序(NGS),最初被用来识别A的遗传原因
2010年的疾病现在正成为诊所的常规。 NGS诊断的能力具有更多
自2010年以来,对于怀疑遗传疾病的儿童而言,它比2010年增加了一倍。 NGS数据的诊断分析
涉及对DNA变化的数万(外显型组)甚至数百万(基因组)的评估
(变体),它需要复杂的计算机算法,这些算法可以筛选这些/此数据以找到
原因。我们的小组开发了人类表型本体论(HPO),这是一种广泛使用的资源
人类遗传学和儿科临床数据的计算分析的世界,允许算法
将患者的症状与7,000多个遗传疾病的数据库记录相匹配。
我们的Exomiser软件比较了已知人类疾病的患者的临床表型和
基因修饰的动物模型,并将其与DNA的引起疾病潜力的分析结束
变体大大减少了搜索空间以识别因果变体。 exomiser有效地处理
外显子和基因组数据。在此提案中,我们计划扩展exomiser以利用新的基因组数据类型
包括长阅读基因组测序和基于NGS的RNA数据分析,这将改善
结构变体(SV)的致病性预测以及影响基因表达或剪接的变体。我们
还将通过表征临床表型网络和
受影响基因的分子功能(途径)。我们计划使用这些算法来评估收集
在100,000个基因组项目等项目中未解决的案例的(同类)。我们的算法方法将
随着新信息添加到医疗
文学。最后,我们将开发工具,通过添加
全球基因组和健康联盟(GA4GH)产生的标准的支持。提议
进步将使exomiser效率更高,更准确和更容易使用,而非专业的儿科医生可以使用,
将基因组诊断物带到常规的小儿临床护理中。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phenotype-aware prioritisation of rare Mendelian disease variants.
- DOI:10.1016/j.tig.2022.07.002
- 发表时间:2022-12
- 期刊:
- 影响因子:11.4
- 作者:Kelly, Catherine;Szabo, Anita;Pontikos, Nikolas;Arno, Gavin;Robinson, Peter N.;Jacobsen, Jules O. B.;Smedley, Damian;Cipriani, Valentina
- 通讯作者:Cipriani, Valentina
Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases.
- DOI:10.1093/bib/bbac188
- 发表时间:2022-09-20
- 期刊:
- 影响因子:9.5
- 作者:
- 通讯作者:
The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.
- DOI:10.1002/humu.24353
- 发表时间:2022-06
- 期刊:
- 影响因子:3.9
- 作者:Laurie, Steven;Piscia, Davide;Matalonga, Leslie;Corvo, Alberto;Fernandez-Callejo, Marcos;Garcia-Linares, Carles;Hernandez-Ferrer, Carles;Luengo, Cristina;Martinez, Ines;Papakonstantinou, Anastasios;Pico-Amador, Daniel;Protasio, Joan;Thompson, Rachel;Tonda, Raul;Bayes, Monica;Bullich, Gemma;Camps-Puchadas, Jordi;Paramonov, Ida;Trotta, Jean-Remi;Alonso, Angel;Attimonelli, Marcella;Beroud, Christophe;Bros-Facer, Virginie;Buske, Orion J.;Canada-Pallares, Andres;Fernandez, Jose M.;Hansson, Mats G.;Horvath, Rita;Jacobsen, Julius O. B.;Kaliyaperumal, Rajaram;Lair-Preterre, Severine;Licata, Luana;Lopes, Pedro;Lopez-Martin, Estrella;Mascalzoni, Deborah;Monaco, Lucia;Perez-Jurado, Luis A.;Posada de la Paz, Manuel;Rambla, Jordi;Rath, Ana;Riess, Olaf;Robinson, Peter N.;Salgado, David;Smedley, Damian;Spalding, Dylan;'t Hoen, Peter A. C.;Topf, Ana;Zaharieva, Irina;Graessner, Holm;Gut, Ivo G.;Lochmuller, Hanns;Beltran, Sergi
- 通讯作者:Beltran, Sergi
The GA4GH Phenopacket schema defines a computable representation of clinical data.
- DOI:10.1038/s41587-022-01357-4
- 发表时间:2022-06
- 期刊:
- 影响因子:46.9
- 作者:Jacobsen, Julius O. B.;Baudis, Michael;Baynam, Gareth S.;Beckmann, Jacques S.;Beltran, Sergi;Buske, Orion J.;Callahan, Tiffany J.;Chute, Christopher G.;Courtot, Melanie;Danis, Daniel;Elemento, Olivier;Essenwanger, Andrea;Freimuth, Robert R.;Gargano, Michael A.;Groza, Tudor;Hamosh, Ada;Harris, Nomi L.;Kaliyaperumal, Rajaram;Lloyd, Kevin C. Kent;Khalifa, Aly;Krawitz, Peter M.;Koeler, Sebastian;Laraway, Brian J.;Lehvaslaiho, Heikki;Matalonga, Leslie;McMurry, Julie A.;Metke-Jimenez, Alejandro;Mungall, Christopher J.;Munoz-Torres, Monica C.;Ogishima, Soichi;Papakonstantinou, Anastasios;Piscia, Davide;Pontikos, Nikolas;Queralt-Rosinach, Nuria;Roos, Marco;Sass, Julian;Schofield, Paul N.;Seelow, Dominik;Siapos, Anastasios;Smedley, Damian;Smith, Lindsay D.;Steinhaus, Robin;Sundaramurthi, Jagadish Chandrabose;Swietlik, Emilia M.;Thun, Sylvia;Vasilevsky, Nicole A.;Wagner, Alex H.;Warner, Jeremy L.;Weiland, Claus;Haendel, Melissa A.;Robinson, Peter N.
- 通讯作者:Robinson, Peter N.
The Clinical Variant Analysis Tool: Analyzing the evidence supporting reported genomic variation in clinical practice.
- DOI:10.1016/j.gim.2022.03.013
- 发表时间:2022-07
- 期刊:
- 影响因子:8.8
- 作者:Chin, Hui-Lin;Gazzaz, Nour;Huynh, Stephanie;Handra, Iulia;Warnock, Lynn;Moller-Hansen, Ashley;Boerkoel, Pierre;Jacobsen, Julius O. B.;du Souich, Christele;Zhang, Nan;Shefchek, Kent;Prentice, Leah M.;Washington, Nicole;Haendel, Melissa;Armstrong, Linlea;Clarke, Lorne;Li, Wenhui Laura;Smedley, Damian;Robinson, Peter N.;Boerkoel, Cornelius F.
- 通讯作者:Boerkoel, Cornelius F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER J MUNGALL其他文献
CHRISTOPHER J MUNGALL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER J MUNGALL', 18)}}的其他基金
Increasing the Yield and Utility of Pediatric Genomic Medicine with Exomiser
利用 Exomiser 提高儿科基因组医学的产量和实用性
- 批准号:
10390282 - 财政年份:2021
- 资助金额:
$ 70.29万 - 项目类别:
Illuminating the Druggable Genome by Knowledge Graphs
通过知识图阐明可药物基因组
- 批准号:
10348825 - 财政年份:2019
- 资助金额:
$ 70.29万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9161233 - 财政年份:2016
- 资助金额:
$ 70.29万 - 项目类别:
An Intelligent Concept Agent for Assisting with the Application of Metadata
辅助元数据应用的智能概念代理
- 批准号:
9357656 - 财政年份:2016
- 资助金额:
$ 70.29万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别: