Personalized relapse prediction in Alcohol Use Disorder
酒精使用障碍的个性化复发预测
基本信息
- 批准号:10440767
- 负责人:
- 金额:$ 52.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdultAlcohol abuseAlcohol dependenceAlcoholsAutomobile DrivingBehaviorBig Data MethodsBrainChronicClinicalClinical assessmentsCommunitiesDataData SetDevelopmentDrug userEmotionalEnrollmentFemaleFunctional Magnetic Resonance ImagingGoalsHaemophilus influenzae type bHeterogeneityImpairmentIndividualIndividual DifferencesInvestigationLinkMachine LearningMaintenanceMeasuresMethodsModelingNeurocognitionNormal RangePatternPersonalityPrevalenceRecoveryRelapseRestRewardsSamplingSeminalStructureTestingTimeWorkaddictionalcohol use disorderartificial neural networkbehavior predictionbehavioral impairmentcohortdesigndisorder subtypedrug of abuseexecutive functionhigh rewardhigh risk drinkingimpaired driving performanceindividual variationinnovationinterestmachine learning methodmaleneurobehavioralneuroimagingnovelpersonalized medicinepredictive modelingpredictive toolspreventive interventionrelapse predictionrelapse preventionrelapse risk
项目摘要
PROJECT SUMMARY
Background: Alcohol use disorder (AUD) has a lifetime prevalence of nearly 30%, with 14.4 million adults in
the US currently in need of treatment. Even with treatment, 50-80% of individuals relapse within a year.
Mechanisms underlying recovery are still not well understood, specifically individual differences underlying
relapse risk. Preliminary data: The work of others and our preliminary data support the involvement of at least
three neuro-behavioral mechanisms in the maintenance of AUD: 1) reward reactivity, 2) aversive reactivity and
3) executive control. Using a data-driven machine learning approach in a non-clinical community sample
(N=1204; 46% male), we demonstrated that the top predictors of alcohol abuse constituted independent,
additive factors of this three-domain model. Our preliminary analyses on subtyping in chronic poly-drug users
(N=40; 75% male) and individuals with past AUD (N=74; 32% male), demonstrated that data-driven machine
learning approaches can be used to study individual differences in these multi-factorial impairments. We found
three distinct ‘subtypes’ in AUD: a “reward drinker” type (increased reward reactivity), a “relief drinker” type
(increased aversive reactivity) and a “low functioning drinker” type (low executive control). Goals and
Hypothesis: The immediate goal of this project in AUD is to develop a sparse personalized relapse prediction
tool that can be employed in a treatment setting to continuously track relapse risk over time. The long-term
goal is to determine if relapse prevention interventions can be personalized. The underlying hypothesis is that
different combinations of independent factors underlie AUD maintenance and relapse per individual. We will
test this by Aim I: determining individual differences in function on three domains (reward reactivity, aversive
reactivity, executive control), and Aim II: evaluating the predictive power of subtype- or domain-specific relapse
prediction models versus an AUD-general model, to determine their respective clinical utility. Specific Aims: In
Aim 1, we will assess individual differences underlying AUD across the three domains of interest using a multi-
method approach (personality, neurocognition, clinical assessments, task/resting fMRI brain function) in a large
treatment cohort (N=200 AUD, 2-5 weeks into treatment, >40% female; N=100 controls). In Aim 2, we will
follow our sample clinically (+6, +12 months) and employ machine learning methods to evaluate if the patterns
of impairments underlying relapse risk are distinctly different between individuals. Innovation: This study
provides a) a systematic, multi-method assessment of the individual heterogeneity in the neuro-behavioral
mechanisms underlying AUD; b) an application of big data analytical approaches for relapse prediction to an
AUD dataset; and c) the development of sparse yet highly informative personalized relapse prediction tools.
Summary: This study will pave the way for the development of personalized relapse prediction tools that track
relapse risk in AUD over time. This can ultimately lead to the development of personalized treatment
approaches, with the potential to dramatically transform the current treatment landscape.
项目摘要
背景:饮酒障碍(AUD)的终生患病率近30%,成年人为1440万
美国目前需要治疗。即使接受治疗,一年内有50-80%的个人中继。
恢复基础的机制仍然不太了解,特别是基本的个体差异
复发风险。初步数据:他人的工作和我们的初步数据至少支持参与
维护AUD中的三种神经行为机制:1)奖励反应性,2)厌恶反应性和
3)执行控制。在非临床社区样本中使用数据驱动的机器学习方法
(n = 1204; 46%男性),我们证明了酒精滥用的最高预测因素是独立的,
这个三域模型的加性因子。我们在慢性多毒物用户中对亚型亚型的初步分析
(n = 40; 75%男性)和过去AUD(n = 74; 32%男性)的个人证明了数据驱动的机器
学习方法可用于研究这些多因素障碍的个体差异。我们发现
AUD中的三种独特的“亚型”:“奖励饮酒者”类型(增加奖励反应性),一种“救济者”类型
(增加厌恶反应性)和“低功能饮酒者”类型(低执行控制)。目标和
假设:该项目在AUD中的直接目标是制定一个稀疏的个性化继电器预测
可以在治疗环境中使用的工具,以继续跟踪继电器风险随着时间的流逝。长期
目标是确定是否可以个性化救济预防干预措施。基本的假设是
独立因素的不同组合是每个人的AUD维护和救济。我们将
通过目标i:确定三个领域功能的个体差异(奖励反应性,厌恶性)
反应性,执行控制)和目标II:评估亚型或域特异性继电器的预测能力
预测模型与Aud-General模型,以确定其各自的临床实用性。具体目标:in
AIM 1,我们将使用多个多数
方法方法(人格,神经认知,临床评估,任务/休息fMRI脑功能)
治疗队列(n = 200 AUD,治疗2-5周,女性> 40%; n = 100个对照)。在AIM 2中,我们将
在临床上遵循我们的样本(+6,+12个月)和员工机器学习方法,以评估模式是否
个体之间的障碍障碍风险的损害明显不同。创新:这项研究
提供a)神经行为中个体异质性的系统多方法评估
AUD的机制; b)大数据分析方法的应用,以救济预测
AUD数据集; c)开发稀疏但信息丰富的个性化继电器预测工具。
摘要:这项研究将为开发跟踪的个性化继电器预测工具铺平道路
随着时间的流逝,AUD的复发风险。这最终可能导致个性化治疗的发展
接近,有可能急剧改变当前的治疗景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Zilverstand其他文献
Anna Zilverstand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
年龄与异质对酗酒影响的建模与分析
- 批准号:11861044
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
酗酒相关问题的建模及研究
- 批准号:11461041
- 批准年份:2014
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
酗酒者易患肺部感染及高致死率的发病机制研究
- 批准号:U1404814
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:联合基金项目
与酗酒毒害性相关的细胞色素CYP2E1蛋白酶催化反应机理及动力学的理论研究
- 批准号:21273095
- 批准年份:2012
- 资助金额:78.0 万元
- 项目类别:面上项目
酗酒促发外伤性蛛网膜下腔出血的生物力学机制及其量化法医病理学鉴定的研究
- 批准号:30772458
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Nucleus reuniens, chronic ethanol and cognitive deficits
核团聚、慢性乙醇和认知缺陷
- 批准号:
10825768 - 财政年份:2023
- 资助金额:
$ 52.64万 - 项目类别:
StuDy AimED at Increasing AlCohol AbsTinEnce (DEDICATE)
旨在提高酒精戒断率的研究(奉献)
- 批准号:
10577022 - 财政年份:2023
- 资助金额:
$ 52.64万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 52.64万 - 项目类别:
Enhancing HIV prevention and reducing alcohol use among people receiving STI care in Malawi: An HIV status neutral approach
在马拉维接受性传播感染护理的人群中加强艾滋病毒预防并减少饮酒:艾滋病毒状况中立的方法
- 批准号:
10696585 - 财政年份:2023
- 资助金额:
$ 52.64万 - 项目类别:
A novel proteomics approach to identify alcohol-induced changes in synapse-specific presynaptic protein interactions.
一种新的蛋白质组学方法,用于识别酒精引起的突触特异性突触前蛋白质相互作用的变化。
- 批准号:
10651991 - 财政年份:2023
- 资助金额:
$ 52.64万 - 项目类别: