Personalized relapse prediction in Alcohol Use Disorder
酒精使用障碍的个性化复发预测
基本信息
- 批准号:10440767
- 负责人:
- 金额:$ 52.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdultAlcohol abuseAlcohol dependenceAlcoholsAutomobile DrivingBehaviorBig Data MethodsBrainChronicClinicalClinical assessmentsCommunitiesDataData SetDevelopmentDrug userEmotionalEnrollmentFemaleFunctional Magnetic Resonance ImagingGoalsHaemophilus influenzae type bHeterogeneityImpairmentIndividualIndividual DifferencesInvestigationLinkMachine LearningMaintenanceMeasuresMethodsModelingNeurocognitionNormal RangePatternPersonalityPrevalenceRecoveryRelapseRestRewardsSamplingSeminalStructureTestingTimeWorkaddictionalcohol use disorderartificial neural networkbehavior predictionbehavioral impairmentcohortdesigndisorder subtypedrug of abuseexecutive functionhigh rewardhigh risk drinkingimpaired driving performanceindividual variationinnovationinterestmachine learning methodmaleneurobehavioralneuroimagingnovelpersonalized medicinepredictive modelingpredictive toolspreventive interventionrelapse predictionrelapse preventionrelapse risk
项目摘要
PROJECT SUMMARY
Background: Alcohol use disorder (AUD) has a lifetime prevalence of nearly 30%, with 14.4 million adults in
the US currently in need of treatment. Even with treatment, 50-80% of individuals relapse within a year.
Mechanisms underlying recovery are still not well understood, specifically individual differences underlying
relapse risk. Preliminary data: The work of others and our preliminary data support the involvement of at least
three neuro-behavioral mechanisms in the maintenance of AUD: 1) reward reactivity, 2) aversive reactivity and
3) executive control. Using a data-driven machine learning approach in a non-clinical community sample
(N=1204; 46% male), we demonstrated that the top predictors of alcohol abuse constituted independent,
additive factors of this three-domain model. Our preliminary analyses on subtyping in chronic poly-drug users
(N=40; 75% male) and individuals with past AUD (N=74; 32% male), demonstrated that data-driven machine
learning approaches can be used to study individual differences in these multi-factorial impairments. We found
three distinct ‘subtypes’ in AUD: a “reward drinker” type (increased reward reactivity), a “relief drinker” type
(increased aversive reactivity) and a “low functioning drinker” type (low executive control). Goals and
Hypothesis: The immediate goal of this project in AUD is to develop a sparse personalized relapse prediction
tool that can be employed in a treatment setting to continuously track relapse risk over time. The long-term
goal is to determine if relapse prevention interventions can be personalized. The underlying hypothesis is that
different combinations of independent factors underlie AUD maintenance and relapse per individual. We will
test this by Aim I: determining individual differences in function on three domains (reward reactivity, aversive
reactivity, executive control), and Aim II: evaluating the predictive power of subtype- or domain-specific relapse
prediction models versus an AUD-general model, to determine their respective clinical utility. Specific Aims: In
Aim 1, we will assess individual differences underlying AUD across the three domains of interest using a multi-
method approach (personality, neurocognition, clinical assessments, task/resting fMRI brain function) in a large
treatment cohort (N=200 AUD, 2-5 weeks into treatment, >40% female; N=100 controls). In Aim 2, we will
follow our sample clinically (+6, +12 months) and employ machine learning methods to evaluate if the patterns
of impairments underlying relapse risk are distinctly different between individuals. Innovation: This study
provides a) a systematic, multi-method assessment of the individual heterogeneity in the neuro-behavioral
mechanisms underlying AUD; b) an application of big data analytical approaches for relapse prediction to an
AUD dataset; and c) the development of sparse yet highly informative personalized relapse prediction tools.
Summary: This study will pave the way for the development of personalized relapse prediction tools that track
relapse risk in AUD over time. This can ultimately lead to the development of personalized treatment
approaches, with the potential to dramatically transform the current treatment landscape.
项目总结
背景:酒精使用障碍(AUD)的终生患病率接近30%,美国有1440万成年人
美国目前需要治疗。即使接受了治疗,50%-80%的人也会在一年内复发。
复苏背后的机制仍不清楚,特别是潜在的个体差异
复发风险。初步数据:其他人的工作和我们的初步数据支持至少
维持AUD的三种神经行为机制:1)奖赏反应性,2)厌恶反应性和
3)执行控制。在非临床社区样本中使用数据驱动的机器学习方法
(n=1204;46%男性),我们证明了酒精滥用的最高预测因素是独立的,
这三个领域模型的附加因素。慢性多药依赖者亚型的初步分析
(N=40;75%男性)和过去有AUD的个人(N=74;32%男性),证明了数据驱动的机器
学习方法可以用来研究这些多因素损伤的个体差异。我们发现
AUD中有三种不同的“亚型”:“奖赏饮酒者”类型(奖赏反应性增强)、“解脱饮酒者”类型
(更多的厌恶反应)和“低功能饮酒者”类型(低执行控制力)。目标和
假设:该项目在澳大利亚的近期目标是开发一种稀疏的个性化复发预测
可在治疗环境中使用的工具,用于持续跟踪随时间推移的复发风险。长期的
目标是确定复发预防干预措施是否可以个性化。基本的假设是
独立因素的不同组合是每个人维持和复发的基础。我们会
通过目标一来测试这一点:确定三个领域(奖励反应性、厌恶性)的功能个体差异
反应性、执行控制)和目标II:评估特定亚型或特定领域复发的预测能力
预测模型与AUD通用模型的对比,以确定它们各自的临床实用性。具体目标:在
目标1,我们将评估三个感兴趣领域的澳元基础上的个体差异
方法(人格、神经认知、临床评估、任务/静息fMRI脑功能)
治疗队列(N=200 AUD,治疗后2-5周,女性占40%;N=100名对照)。在目标2中,我们将
临床跟踪我们的样本(+6个月、+12个月),并使用机器学习方法来评估这些模式
复发风险的潜在损害程度在不同的人之间有明显的不同。创新:这项研究
提供了一个系统的,多方法的评估个体的异质性在神经行为
AUD背后的机制;b)将大数据分析方法用于复发预测
AUD数据集;以及c)开发稀疏但信息量很大的个性化复发预测工具。
摘要:这项研究将为个性化复发预测工具的开发铺平道路
随着时间的推移,澳元的复发风险。这最终会导致个性化治疗的发展。
方法,有可能极大地改变目前的治疗格局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Zilverstand其他文献
Anna Zilverstand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A novel animal model to study the association between alcohol abuse during late adolescence with common conditions observed in combat Veterans
一种新的动物模型,用于研究青春期后期酗酒与退伍军人中观察到的常见状况之间的关联
- 批准号:
10644999 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
Reinforcement as a Prospective Predictor of Real-time Alcohol Abuse Following Bariatric Surgery
强化作为减肥手术后实时酒精滥用的前瞻性预测因子
- 批准号:
10370120 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
A novel animal model to study the association between alcohol abuse during late adolescence with common conditions observed in combat Veterans
一种新的动物模型,用于研究青春期后期酗酒与退伍军人中观察到的常见状况之间的关联
- 批准号:
10368295 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
Reinforcement as a Prospective Predictor of Real-time Alcohol Abuse Following Bariatric Surgery
强化作为减肥手术后实时酒精滥用的前瞻性预测因子
- 批准号:
10705563 - 财政年份:2022
- 资助金额:
$ 52.64万 - 项目类别:
The Functional Implications of Astrocytic GPCR-signaling on Alcohol Abuse
星形胶质细胞 GPCR 信号传导对酒精滥用的功能影响
- 批准号:
10472456 - 财政年份:2021
- 资助金额:
$ 52.64万 - 项目类别:
Trauma and Neurobiological Threat Reactivity as Risk Factors for Alcohol Abuse in Youth
创伤和神经生物学威胁反应作为青少年酗酒的危险因素
- 批准号:
10582520 - 财政年份:2021
- 资助金额:
$ 52.64万 - 项目类别:
Trauma and Neurobiological Threat Reactivity as Risk Factors for Alcohol Abuse in Youth
创伤和神经生物学威胁反应作为青少年酗酒的危险因素
- 批准号:
10368089 - 财政年份:2021
- 资助金额:
$ 52.64万 - 项目类别:
The Functional Implications of Astrocytic GPCR-signaling on Alcohol Abuse
星形胶质细胞 GPCR 信号传导对酒精滥用的功能影响
- 批准号:
10089613 - 财政年份:2021
- 资助金额:
$ 52.64万 - 项目类别: