NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
基本信息
- 批准号:10469690
- 负责人:
- 金额:$ 62.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAction PotentialsAddressAlgorithmsAnatomyAreaAutomationBRAIN initiativeBehaviorBiophysicsBrainBrain regionCharacteristicsCognitionCollaborationsCommunitiesComputer softwareDataData SetDetectionDevicesDiseaseElectrodesElectrophysiology (science)ElementsEnsureEventFundingGoalsImageImage EnhancementIndividualIndustrializationInfrastructureLeadershipLearningMeasurementMeasuresMethodsMorphologyMotionNatureNerve DegenerationNeuronsOpticsPopulationPrivatizationProcessProductionPsyche structureResearchResolutionResourcesSamplingSampling BiasesScienceScientific Advances and AccomplishmentsShapesSiteSoftware ToolsSortingSpecific qualifier valueSpeedStructureSystemTechniquesTestingTrainingValidationWorkbiophysical modelcell typecostcost efficientdata qualitydensitydesigndisabilityelectric fieldexcitatory neuronexperimental studyfabricationflexibilitygranule cellhippocampal pyramidal neuronimage registrationimaging modalityimprovedimproved outcomein vivoin vivo Modelinhibitory neuroninnovationinterestmultimodalityneuromechanismnext generationnovelopen sourcetemporal measurementtooltwo-photonuser friendly softwareuser-friendlyvoltage
项目摘要
Summary/Abstract
Understanding the neural mechanisms underpinning cognition and behavior requires the
ability to measure the dynamics and interactions of populations of neurons spread across
many brain regions. Electrophysiological techniques provide the ability to measure this
activity across superficial and deep structures at the speed of thought. Recent advances in
electrophysiology have massively increased data quantity, quality, and ease of acquisition,
thereby meaningfully reducing barriers to understanding the global brain circuits underlying
behavior. A significant remaining challenge is to optimize device characteristics in order to
further broaden utility, improve data quality, and accelerate the pace of research. In
particular, state of the art site density is spatially too coarse to detect some cell types and
neuronal processes; it remains challenging to record neurons stably in the face of brain
motion; and data preprocessing is still a major limiting factor in the pace of experiments.
This proposal will address these limitations by producing and evaluating a new device with
>10x the number of recording sites than state-of-the-art, corresponding to an order of
magnitude higher density. This device thus functions like a high-resolution electrical camera
in the brain, able to image tiny electrical fields and capable of capitalizing on techniques
from optics such as image registration for recording stability.
We will validate and develop the new probe's characteristics by quantifying their increased
ability to detect a large range of neuron types; by testing and developing their ability to track
neurons across brain motion using controlled conditions; by improving algorithms towards
automation of data preprocessing; and by conducting multi-modal ground-truth experiments.
These probes will go beyond solving technical limitations, additionally providing new types of
data: electrical imaging of `electro-morphological' shapes will enable enhanced cell-type
identification and validation of neuronal biophysical models in vivo.
We will disseminate the new probes, along with user-friendly software to take advantage of
their improved characteristics, to `beta-tester' labs specifically interested in studying key
areas of scientific opportunity. These areas include dendritic computation, freely-moving
behavior, and cerebellar function, and this direct dissemination will rapidly accelerate their
impact on scientific advancement.
摘要/摘要
理解支持认知和行为的神经机制需要
能够测量分布在不同区域的神经元群体的动态和相互作用
大脑的许多区域。电生理技术提供了测量这一点的能力
以思维的速度跨越表层和深层结构的活动。的最新进展
电生理学极大地提高了数据的数量、质量和易获性,
从而有意义地减少了理解潜在的全球大脑回路的障碍
行为。剩下的一个重大挑战是优化设备特性,以便
进一步拓宽实用性,提高数据质量,加快研究步伐。在……里面
具体地说,现有技术的站点密度在空间上太粗而不能检测到某些小区类型
神经元突起;稳定地记录大脑表面的神经元仍然具有挑战性
数据预处理仍然是限制实验速度的一个主要因素。
该提案将通过生产和评估具有以下特性的新设备来解决这些限制
>;录制站点的数量是最先进的10倍,对应于
更大的密度。因此,这种设备的功能就像一台高分辨率的电子摄像机
在大脑中,能够想象微小的电场,并能够利用技术
例如用于记录稳定性的图像配准。
我们将通过量化它们增加的数量来验证和开发新探测器的特性
能够检测大范围的神经元类型;通过测试和发展他们的跟踪能力
使用受控条件的大脑运动中的神经元;通过改进算法
数据预处理的自动化;以及进行多模式地面实况试验。
这些探头将超越解决技术限制,此外还提供了新类型的
数据:电学形态的电子成像将增强细胞类型
活体神经元生物物理模型的识别和验证。
我们将传播新的探测器,以及用户友好的软件,以利用
他们改进的特性,给专门对研究关键字感兴趣的“测试者”实验室
科学机会的领域。这些领域包括树枝状计算、自由移动
行为和小脑功能,而这种直接传播将迅速加速它们的
对科学进步的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
- DOI:10.1126/science.abf4588
- 发表时间:2021-04-16
- 期刊:
- 影响因子:0
- 作者:Steinmetz NA;Aydin C;Lebedeva A;Okun M;Pachitariu M;Bauza M;Beau M;Bhagat J;Böhm C;Broux M;Chen S;Colonell J;Gardner RJ;Karsh B;Kloosterman F;Kostadinov D;Mora-Lopez C;O'Callaghan J;Park J;Putzeys J;Sauerbrei B;van Daal RJJ;Vollan AZ;Wang S;Welkenhuysen M;Ye Z;Dudman JT;Dutta B;Hantman AW;Harris KD;Lee AK;Moser EI;O'Keefe J;Renart A;Svoboda K;Häusser M;Haesler S;Carandini M;Harris TD
- 通讯作者:Harris TD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY D HARRIS其他文献
TIMOTHY D HARRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY D HARRIS', 18)}}的其他基金
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
10475277 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
9924965 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
10240456 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
- 批准号:
10231150 - 财政年份:2019
- 资助金额:
$ 62.78万 - 项目类别:
NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
- 批准号:
10016865 - 财政年份:2019
- 资助金额:
$ 62.78万 - 项目类别:
High Accuracy Single Molecule DNA Sequencing by Synthesis
高精度单分子 DNA 合成测序
- 批准号:
7192686 - 财政年份:2006
- 资助金额:
$ 62.78万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 62.78万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 62.78万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 62.78万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 62.78万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 62.78万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 62.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)