Slowing proteotoxic neurodegeneration by boosting mitochondrial bioenergetics and recruiting a novel class of chaperones

通过增强线粒体生物能和招募一类新型伴侣来减缓蛋白毒性神经变性

基本信息

  • 批准号:
    10485489
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

One of the major challenges for the U.S. Department of Veterans Affairs is to extend the health-span of the veterans and their families as their physical and/or cognitive performance capabilities decline with age. Human neurodegenerative protein misfolding disorders or proteinopathies, are associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) disorders such as Huntington's disease and α-synucleinopathies such as Parkinson's disease. Disclosing the basic molecular and metabolic alterations that occur during aging of post-mitotic cells such as neurons, under proteotoxic stress is crucial for understanding the etiology of neuro-proteinopathies. Metabolic and mitochondrial alterations are hallmarks of aging and neurodegeneration. Over the last decade, we and others have shown that enhancement of mitogenesis or overexpression of NMNAT/NMA1, an enzyme in the Nicotinic acid/Nicotinamide Salvage NAD+ biosynthetic pathway, act as powerful suppressor of proteotoxicities in yeast, fly and mouse models. Through screens in yeast models we identified three additional enzymes of the NAD+ biosynthetic salvage pathway with a role in proteostasis: NADS/Qns1, NaPTRase/Npt1 and NDase/Pnc1. Our observations suggest the existence of an evolutionarily conserved strategy of `repurposing' (or `moonlighting') housekeeping enzymes under stress conditions. Under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. In yeast cells, the NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains or α-synuclein. Their catalytic function is not required for their chaperone role. Preliminary studies in human neuronal models of HD have shown that the human proteins conserve similar “moonlighting” functions and the capacity to protect against proteotoxic stress. We now propose to address the fundamental problem of the intricate interaction between metabolic and cellular protein homeostasis pathways in human neurons. Some of our studies will continue exploiting the yeast model to perform structure-function relationship studies to disclose the domains involved in the chaperone function of the four yeast proteins. We will also continue using yeast models of HD to screen for suppressors among the Nicotinamide Riboside Salvage NAD+ biosynthetic pathway enzymes. An essential component of our studies is the translation of the results previously obtained in yeast to HD patient-derived neurons and HD mouse models. Two neuronal culture systems will be used to test different aspects of disease progression: HD patient-derived induced pluripotent stem cells (iPSCs) differentiated into neurons and HD patient-derived neurons through direct conversion of fibroblasts. A mouse model expressing full-length huntingtin will be used for pre-clinical efficacy studies in vivo. We hypothesize that mitochondrial biogenesis- and NAD+ -biosynthetic-protein pathways act additively to promote energetic stability and maintain proteostasis, respectively, and in this way, protect HD neurons against death. Identifying and characterizing independent yet synergistic pathways of neuroprotection will reveal the complex network for neuroprotection and the intricate relationship between metabolism and neurodegeneration. The proposed research may lead to novel therapeutic approaches to modulate these pathways to counteract cellular toxicities and extend health-span. Finally, the ability to control stress-resistance mechanisms such as those against proteotoxic stress may provide molecular targets and tools to treat the Veterans and the general population to enhance their physical and cognitive performance and postpone their progressive deterioration with age.
美国退伍军人事务部面临的主要挑战之一是延长 退伍军人和他们的家人,因为他们的身体和/或认知能力下降, 年龄人类神经退行性蛋白质错误折叠病症或蛋白质病与以下疾病相关: 大脑神经元中异常的蛋白质沉积。它们包括多聚谷氨酰胺(polyQ)病症,例如 亨廷顿病和α-突触核蛋白病如帕金森病。披露基本情况 在有丝分裂后的细胞如神经元老化过程中发生的分子和代谢变化, 蛋白毒性应激对于理解神经蛋白病的病因是至关重要的。 代谢和线粒体改变是衰老和神经退行性变的标志。来 在过去十年中,我们和其他人已经证明, NMNAT/NMA 1是烟酸/烟酰胺补救NAD+生物合成途径中的一种酶, 作为酵母、苍蝇和小鼠模型中蛋白毒性的强大抑制剂。通过酵母中的筛选 我们鉴定了NAD+生物合成补救途径的另外三种酶, 蛋白质抑制:NADS/Qns 1、NaPTRase/Npt 1和NDase/Pnc 1。我们的观察表明 一种进化上保守的“再利用”(或“兼职”)管家酶的策略, 在压力条件下在蛋白毒性应激下,这四种蛋白质作为分子被募集, 具有保持酶和折叠酶活性的分子伴侣。在酵母细胞中,NAD+补救蛋白通过 防止错误折叠,并与Hsp 90伴侣蛋白一起促进延伸蛋白的重新折叠 polyQ结构域或α-突触核蛋白。它们的伴侣作用不需要它们的催化功能。 在HD的人类神经元模型中的初步研究表明,人类蛋白质保守, 类似的“兼职”功能和保护免受蛋白毒性应激的能力。 我们现在建议解决的基本问题,错综复杂的相互作用, 代谢和细胞蛋白质稳态途径。我们的一些研究将 继续利用酵母模型进行结构-功能关系研究, 这四种酵母蛋白的伴侣蛋白功能中涉及的结构域。我们也将继续使用酵母 用于筛选烟酰胺核苷补救NAD+生物合成抑制剂的HD模型 途径酶。我们研究的一个重要组成部分是翻译以前的结果 在酵母中获得的HD患者来源的神经元和HD小鼠模型。两种神经元培养系统 将用于测试疾病进展的不同方面:HD患者衍生的诱导多能 干细胞(iPSC)通过直接诱导分化为神经元和HD患者来源的神经元。 成纤维细胞的转化。表达全长亨廷顿蛋白的小鼠模型将用于临床前研究。 体内功效研究。我们假设线粒体生物合成和NAD+生物合成蛋白 途径分别起着促进能量稳定和维持蛋白质稳态的作用, 保护HD神经元免于死亡。 识别和表征独立但协同的神经保护途径将 揭示了神经保护的复杂网络以及代谢和神经元之间的错综复杂的关系。 神经变性拟议的研究可能会导致新的治疗方法,以调节 这些途径来抵消细胞毒性和延长健康寿命。最后,控制能力 抗应激机制,如抗蛋白毒性应激机制,可提供分子靶点 和工具来治疗退伍军人和一般人群,以提高他们的身体和认知能力, 性能,并推迟其随着年龄的逐步恶化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antoni Barrientos其他文献

Antoni Barrientos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antoni Barrientos', 18)}}的其他基金

Mitochondrial Biogenesis in Health and Disease
健康和疾病中的线粒体生物发生
  • 批准号:
    9929891
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Mitochondrial Biogenesis in Health and Disease
健康和疾病中的线粒体生物发生
  • 批准号:
    10204635
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Mitochondrial Biogenesis in Health and Disease
健康和疾病中的线粒体生物发生
  • 批准号:
    10403640
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Mitochondrial Biogenesis in Health and Disease
健康和疾病中的线粒体生物发生
  • 批准号:
    9071590
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Mitochondrial Biogenesis in Health and Disease
健康和疾病中的线粒体生物发生
  • 批准号:
    10620217
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
The Biosynthetic Pathway of Mitochondrial Respirasomes
线粒体呼吸体的生物合成途径
  • 批准号:
    8995666
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
FASEB SRC on Mitochondrial Assembly & Dynamics in Health, Disease & Aging
FASEB SRC 线粒体组装
  • 批准号:
    8199803
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
CYTOCHROME C OXIDASE IN HEALTH AND DISEASE
细胞色素C氧化酶在健康和疾病中的作用
  • 批准号:
    7839344
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
CYTOCHROME C OXIDASE IN HEALTH AND DISEASE
细胞色素C氧化酶在健康和疾病中的作用
  • 批准号:
    7756627
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Cytochrome c Oxidase Assembly in Health and Disease
健康和疾病中的细胞色素 c 氧化酶组装
  • 批准号:
    8237711
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了