Integrative analysis of genomics and imaging data from the BRAIN Initiative and other public data sources
对来自 BRAIN Initiative 和其他公共数据源的基因组学和成像数据进行综合分析
基本信息
- 批准号:10190025
- 负责人:
- 金额:$ 130.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectiveArchivesAtlasesAutopsyBRAIN initiativeBehavioralBiologicalBrainBrain DiseasesBrain regionCellsClinical ResearchCognitiveCollectionDataData AnalysesData SetData SourcesDepositionDisciplineExhibitsFunctional ImagingFutureGeneticGenetic EpistasisGenetic ModelsGenetic VariationGenomicsGenotype-Tissue Expression ProjectGoalsGrainHeritabilityHumanImageJointsKnowledgeLeadLearningLengthLinkMagnetic Resonance ImagingMeasuresMental disordersMetadataMethodsModelingMolecularMolecular GeneticsNetwork-basedNeurosciencesPatternPhenotypePolygenic TraitsProcessRegulator GenesResearchResearch PersonnelResolutionResourcesRiskStructural ModelsStructureTechniquesTheoretical modelThickTimeTissuesTwin Multiple BirthVariantWorkbasebehavior influencebiobankbrain cellcell typeconnectomedata harmonizationdata integrationdeep learningdesignfunctional genomicsgenetic predictorsgenetic variantgenome wide association studygenomic datahigh dimensionalityhuman diseaseimprovedin vivoinsightinterestmethod developmentmodel buildingmultilevel analysisneural circuitneuroimagingphenomicsphenotypic datapredictive modelingpsychologicrepositorysecondary analysistrait
项目摘要
Constructing an integrated picture of human brain function requires understanding how the effects of molecular
and genetic factors propagate upwards, through many intervening layers of structure and interaction, to
influence behavioral, psychiatric and cognitive traits. Projects such as the BRAIN Initiative (BI) recognize that
building such a picture requires the convergent efforts of experts across genetics, genomics, neuroscience,
and clinical studies, and have created resources to aid the integration of data from these disciplines. However,
the challenge of combining experimental methods and theoretical models spanning vast length/time scales
remains significant. One of the more promising avenues of addressing this challenge is the use of interpretable
deep-learning approaches to learn high-dimensional structure inherent in data. By embedding constraints from
known biological structure, investigators can relate the models’ internal representations to identifiable factors
from neuroscience. This proposal will draw on the extensive resources in BI archives, along with other public
resources, to integrate data from genetics, functional genomics, and neuroimaging. Through secondary
analysis on this data we will build deep, multilevel polygenic models of high-level traits, such as cognitive,
affective and psychiatric traits. We will trace the mechanisms underlying such traits to specific regions, cell
types, functional connectivity patterns and structural imaging features. Additionally, by embedding biological
structure at intermediate levels (tissue and cell-type gene regulatory networks; structural/functional constraints
from MRI data), we will build models that improve on additive heritability measures of polygenic risk. In the
process, we will harmonize BI data with other publicly available brain omics and imaging datasets. We will
deposit all resources and models into relevant BI archives. The proposal is framed as follows. First, we will
combine genetics with genomics-based networks from multiple brain regions and cell types, and develop
predictive models of region- and cell-type-specific omics variation. These will be included in an interpretable
deep model of cognitive and psychiatric traits (Aim 1). Second, we will learn predictive models of structural and
functional imaging features from genetic predictors, which will likewise be embedded in interpretable deep
models of high-level traits (Aim 2). Third, an integrated, polygenic model will be built by combining both
functional-genomics- and neuroimaging-based features, allowing the impact of both subcomponents to be
assessed. Furthermore, we will extend our previous work to develop compression-based interpretability
methods, which allow a network to be coarse-grained and interpreted at varying levels of resolution. Such
interpretation will include the exploration of subphenotypic structure in psychiatric disorders and interactions
between traits (Aim 3). We expect the proposed approach to have wide-ranging implications, including insights
into mechanistic underpinnings of brain function, new frameworks for integrative multilevel analysis, and the
development of methods and resources for future research.
构建人类大脑功能的整体图景需要理解分子的作用
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anxiety Shapes Amygdala-Prefrontal Dynamics During Movie Watching.
- DOI:10.1016/j.bpsgos.2022.03.009
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Wave-like properties of functional dynamics across the cortical sheet.
整个皮质层功能动力学的波状特性。
- DOI:10.1016/j.neuron.2023.03.033
- 发表时间:2023
- 期刊:
- 影响因子:16.2
- 作者:Chopra,Sidhant;Zhang,Xi-Han;Holmes,AvramJ
- 通讯作者:Holmes,AvramJ
Language network lateralization is reflected throughout the macroscale functional organization of cortex.
- DOI:10.1038/s41467-023-39131-y
- 发表时间:2023-06-09
- 期刊:
- 影响因子:16.6
- 作者:Labache, Loic;Ge, Tian;Yeo, B. T. Thomas;Holmes, Avram J.
- 通讯作者:Holmes, Avram J.
A shared spatial topography links the functional connectome correlates of cocaine use disorder and dopamine D2/3 receptor densities.
共享的空间拓扑将可卡因使用障碍和多巴胺 D2/3 受体密度的功能连接组相关联。
- DOI:10.1101/2023.11.17.567591
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ricard,JocelynA;Labache,Loïc;Segal,Ashlea;Dhamala,Elvisha;Cocuzza,CarrisaV;Jones,Grant;Yip,Sarah;Chopra,Sidhant;Holmes,AvramJ
- 通讯作者:Holmes,AvramJ
Meta-matching as a simple framework to translate phenotypic predictive models from big to small data.
元匹配是一个简单的框架,将表型预测模型从大数据转化为小数据。
- DOI:10.1038/s41593-022-01059-9
- 发表时间:2022-06
- 期刊:
- 影响因子:25
- 作者:He, Tong;An, Lijun;Chen, Pansheng;Chen, Jianzhong;Feng, Jiashi;Bzdok, Danilo;Holmes, Avram J.;Eickhoff, Simon B.;Yeo, B. T. Thomas
- 通讯作者:Yeo, B. T. Thomas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bender Gerstein其他文献
Mark Bender Gerstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bender Gerstein', 18)}}的其他基金
1/2 Discovery and validation of neuronal enhancers associated with the development of psychiatric disorders
1/2 与精神疾病发展相关的神经元增强剂的发现和验证
- 批准号:
10801125 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Laboratory, Data Analysis, and Coordinating Center (LDACC) for the Developmental Human Genotype-Tissue Expression Project
人类发育基因型组织表达项目实验室、数据分析和协调中心 (LDACC)
- 批准号:
10306961 - 财政年份:2021
- 资助金额:
$ 130.99万 - 项目类别:
Laboratory, Data Analysis, and Coordinating Center (LDACC) for the Developmental Human Genotype-Tissue Expression Project
人类发育基因型组织表达项目实验室、数据分析和协调中心 (LDACC)
- 批准号:
10709553 - 财政年份:2021
- 资助金额:
$ 130.99万 - 项目类别:
A Big Data Approach to Identify Epigenetic, Transcriptomic, and Network Dynamics as Immune Dysfunction Drivers Associated with HIV Infection and Substance Use Disorder
利用大数据方法识别表观遗传、转录组和网络动态作为与 HIV 感染和药物滥用障碍相关的免疫功能障碍驱动因素
- 批准号:
10408130 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10685384 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10461029 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
Supplement: Human Brain Collection for Study of the Neuropathogenesis of SARS-CoV-2, HIV-1, and Opioid Use Disorder
补充:用于研究 SARS-CoV-2、HIV-1 和阿片类药物使用障碍神经发病机制的人脑采集
- 批准号:
10468477 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
The Y-SCORCH Data Generation Center at Yale for Single-Cell Opioid Responses in the Context of HIV
耶鲁大学 Y-SCORCH 数据生成中心用于艾滋病毒背景下的单细胞阿片类药物反应
- 批准号:
10223258 - 财政年份:2020
- 资助金额:
$ 130.99万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 130.99万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 130.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)