Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
基本信息
- 批准号:9521770
- 负责人:
- 金额:$ 59.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:Binding SitesBioinformaticsCell Differentiation processCellsChIP-seqChromatinCodeCommunitiesComputational algorithmDNA-Directed RNA PolymeraseDNase I hypersensitive sites sequencingDataData SetDetectionDiagnosisElementsEmbryonic DevelopmentEnhancersErythropoiesisEukaryotic CellEventGene Expression RegulationGenesGenetic TranscriptionGoalsHandHematopoieticHumanInvestigationKDM1A geneKineticsKnowledgeLabelMapsMeasuresMediatingMessenger RNAMetabolicMethodsMissionMolecularNeural Network SimulationNucleic Acid Regulatory SequencesNucleotidesOutputPhenotypePlayPolymerasePositioning AttributeProcessProtocols documentationPublic HealthRNARNA Polymerase IIRNA purificationRegulator GenesReportingResearchResolutionRibonucleasesRibosomal RNARoleSamplingScienceSeriesSmall Nuclear RNASmall Nucleolar RNASpeedSystemTestingTimeTranscriptTranscriptional RegulationUnited States National Institutes of HealthUntranslated RNAcell typecomputerized toolsdeep learningdeep neural networkdensityflexibilityfunctional genomicsgenome-widegenomic datahuman diseaseimprovedinnovationnetwork modelsnovelpromotertranscription factortranscriptomevirtual
项目摘要
Large consortium efforts have collected hundreds of genome-wide datasets that have delineated myriad
regulatory regions, transcription factor binding sites and large numbers of coding and non-coding transcripts.
Even with this massive amount of data, it remains a significant challenge to determine how the mapped elements
function together in regulatory networks. This is due in large part to our inability to accurately and quantitatively
detect all forms of nascent transcription, the instantaneous output of transcriptional regulation. Moreover, our
understanding of global gene regulation is restricted by a lack of computational tools that seamlessly integrate
genome-wide datasets. The overall goal of this proposal is to maximize the impact of nascent transcriptome
studies and enable facile integration with other functional genomic data. My group developed native elongating
transcript sequencing (NET-seq), that enables the strand-specific nucleotide-resolution mapping of RNA
polymerase density, highlighting all transcriptional activity regardless of transcript half-lives and revealing precise
positions of Pol II pausing where regulatory control is applied. Here, we will develop a new version of NET-seq
– NET-seq 2.0 – that enables the routine, scalable and flexible application to diverse human cell types (or any
eukaryotic system). Moreover, we will increase the potential of NET-seq analysis by developing two innovative
bioinformatics strategies to seamlessly integrate NET-seq data with other genome-wide datasets that will have
applications beyond NET-seq studies. To demonstrate the broad utility of our integrated approach, we will study
regulatory networks and cell differentiation for which instantaneous nascent transcriptional analysis will be highly
impactful. In Aim 1, our goal is to make NET-seq easier, cheaper, and more flexible. Our improvements will
reduce background and increase usable reads, dramatically reduce cell input requirements (100-1000-fold),
enable dense, region-specific RNA transcription analyses, and enable quantitative comparisons between
samples and conditions. In Aim 2, we will determine transcription kinetics through integrating NET-seq with
metabolic RNA labeling (TT-seq) data which report local synthesis rates. This integrative approach yields a rich
transcriptional phenotype that we will use to develop gene regulatory network models. In Aim 3, we will create
new computational algorithms that circumvent the need to determine each molecular event separately, and
instead infer the status of unmapped events using information-rich datasets, such as NET-seq. We will use
integrative deep neural networks (`deep-learning') that use available genome-wide datasets to predict
unavailable datasets from data already on hand. We will apply this approach to study erythropoiesis using a well-
defined primary human hematopoietic differentiation system by a time series NET-seq and DNase-seq analysis.
These data will inform deep neural network models to predict ChIP-seq data for myriad transcription factors and
chromatin marks to investigate key regulatory events without additional expense.
大型财团的努力已经收集了数百个全基因组数据集,这些数据集描绘了无数
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Stirling Churchman其他文献
Lee Stirling Churchman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Stirling Churchman', 18)}}的其他基金
Direct sequencing of nascent RNA to uncover the functional impact of genetic variants on RNA processing
对新生 RNA 进行直接测序,揭示遗传变异对 RNA 加工的功能影响
- 批准号:
10372582 - 财政年份:2021
- 资助金额:
$ 59.25万 - 项目类别:
Nuclear-mitochondrial co-regulation during mitochondrial biogenesis
线粒体生物发生过程中核线粒体的共同调节
- 批准号:
9289152 - 财政年份:2017
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
10171878 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
9052194 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
9762140 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
8480073 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
Mechanisms of Transcriptional Control Revealed by Nascent Transcript Sequencing
新生转录本测序揭示的转录控制机制
- 批准号:
10584193 - 财政年份:2013
- 资助金额:
$ 59.25万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Standard Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Cooperative Agreement
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
Intramural
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
Continuing Grant
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 59.25万 - 项目类别:
Standard Grant