Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
基本信息
- 批准号:10448923
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-22 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAntibiotic TherapyAntibioticsApoptosisBacteriaBehaviorBiodistributionBlood VesselsBone MarrowCell DeathCell membraneCellsCessation of lifeClinical ResearchCoinComplexDataDevelopmentDiseaseDoseDrug KineticsEndothelial CellsEndotheliumEnergy SupplyEscherichia coliFamilyFinancial HardshipFormulationFunctional disorderFutureGoalsHealthcare SystemsHomeostasisHydrogen PeroxideImmuneImmune responseImmune systemIn VitroInfectionInflammasomeInflammationInflammatoryInjectionsLeadLipidsMaximum Tolerated DoseMedicareModelingMusOxidative StressPathway interactionsPerformancePharmaceutical PreparationsPreparationProcessPrognosisPropertyReportingResuscitationRifampinSafetySepsisSystemTNF geneTherapeuticTherapeutic StudiesTransportationTreatment EfficacyVascular SystemWorkbiomaterial compatibilitycalcium phosphatececal ligation puncturecell injuryclinical applicationclinical translationcombatcostcytokinedelivery vehicledrug release profileeffective therapyefficacious treatmentendothelial dysfunctionextracellularhemodynamicsimprovedin vivoinnovationmacrophagenanoparticlenanoparticle deliverynicotinamide-beta-ribosidenovel therapeuticsorgan injurypreclinical studypreventsuccesstherapeutic nanoparticlestherapeutically effectiveuptake
项目摘要
Project Summary
Sepsis is a complex disorder caused by a dysregulated host response to infection. Current sepsis therapeutic
strategies do not adequately address immune dysregulation and endothelial dysfunction. NAD+ can potentially
be an efficient therapeutic molecule for sepsis, but its therapeutic efficacy is hindered by its inability to pass
through the cell membrane. Extracellular NAD+ has to be degraded into NAD+ precursors (e.g., nicotinamide and
nicotinamide riboside), which can be taken up by cells and subsequently enhance intracellular NAD+ biosynthesis.
However, this conversion process is inefficient. Such a limitation in NAD+ intracellular transportation drastically
decreases the bioactivity of NAD+ and necessitates an extremely high dose for effective therapy.
We aim to develop an innovative, safe, and effective sepsis therapy utilizing NAD+ delivery nanoparticles (NPs),
which can directly (i.e., without being converted to NAD+ precursors) and efficiently replenish the cellular NAD+
pool, in combination with a broad-spectrum antibiotic. To achieve this goal, we formulated a family of NAD+ or
NAD+/antibiotic (e.g., rifampicin (Rif)) loaded lipid (LP)-coated calcium phosphate nanoparticles (NPs) (coined
as NAD+ loaded NPs including NAD+-LP-CaP and NAD+-Rif-LP-CaP). The NAD+ loaded NPs possess a number
of desirable properties including high loading content, high stability, pH-responsive drug release profiles, and
endosomal escape capability. Despite the therapeutic potential of NAD+, there is no prior report on in vivo studies
using NAD+ NPs for therapeutic studies including sepsis. Our preliminary data has demonstrated that NAD+-LP-
CaP can suppress the release of pro-inflammatory cytokines and prevent inflammation-induced cell death and
endothelium disruption. Therefore, NAD+ loaded NPs can potentially help maintain homeostasis of both the
immune system and the vascular system. Our NAD+ loaded NPs successfully treated LPS- and bacteria-induced
sepsis in vivo. They were able to accumulate in the sepsis injured organs and mitigate multiple organ injury.
Compared with free NAD+, NAD+ loaded NPs showed significantly improved therapeutic efficacies.
For this proposed work, we plan to further optimize the NAD+ loaded NPs to achieve even higher drug loading
content and efficiency (Aim 1). The therapeutic mechanism of NAD+-LP-CaP will be studied in vitro in order to
gain a better understanding of how the NAD+ loaded NPs suppress inflammation and also protect cells including
immune cells and endothelial cells from inflammation-induced cell damage (Aim 2). Finally, we will systematically
determine the safety, pharmacokinetics, and therapeutic efficacy of the NAD+ loaded NPs in two representative
mouse sepsis models, and also study the NP’s impact on immune and vascular homeostasis (Aim 3).
If successful, this proposed study will create an innovative, safe, and effective therapeutic approach for treating
sepsis. A translational success of this paradigm-shift therapy for sepsis could significantly improve the prognosis
of this serious disease that causes one in five deaths around the world and decrease the tremendous financial
burden it brings to the healthcare systems (e.g., around $41.5 billion cost in Medicare in the US).
项目摘要
败血症是由宿主对感染的反应失调引起的复杂疾病。当前的败血症治疗
策略不能充分解决免疫失调和内皮功能障碍。 NAD+可能会
成为败血症的有效热分子,但其治疗效率无法通过
通过细胞膜。细胞外NAD+必须降解为NAD+前体(例如烟酰胺和
烟酰胺核苷),可以通过细胞吸收并随后增强细胞内NAD+生物合成。
但是,这种转换过程效率低下。 NAD+细胞内转运的这种限制很大
降低NAD+的生物活性,并需要极高的剂量以进行有效治疗。
我们旨在开发使用NAD+递送纳米颗粒(NP)的创新,安全和有效的败血症治疗
可以直接(即,不转换为NAD+前体)并有效复制细胞NAD+
池,结合广谱抗生素。为了实现这一目标,我们制定了一个NAD+的家庭
NAD+/抗生素(例如,利福平(RIF))负载脂质(LP)涂层磷酸钙纳米颗粒(NPS)(固定
作为NAD+加载的NP,包括NAD+-LP-CAP和NAD+-RIF-LP-CAP)。 NAD+加载的NP具有一个数字
理想的特性,包括高负载含量,高稳定性,pH响应性药物释放曲线和
内体逃生能力。尽管NAD+具有治疗潜力,但没有关于体内研究的事先报告
使用NAD+ NP进行包括败血症在内的治疗研究。我们的初步数据表明NAD+-LP-
CAP可以抑制促炎性细胞因子的释放,并防止注射诱导的细胞死亡和
内皮破坏。因此,NAD+负载的NP可以有助于维持这两者的体内平衡
我们的NAD+负载NP成功处理了LPS和细菌诱导的
体内败血症。他们能够在败血症受伤的器官中积聚并减轻多器官损伤。
与游离NAD+相比,NAD+加载的NP显示出明显提高的治疗效率。
对于这项提议的工作,我们计划进一步优化NAD+加载的NP,以实现更高的药物加载
内容和效率(目标1)。 NAD+-LP-CAP的理论机制将在体外研究
更好地了解NAD+加载的NP抑制注射,还可以保护细胞
免疫细胞和内皮细胞来自炎症引起的细胞损伤(AIM 2)。最后,我们将系统地
确定两个代表性的NAD+负载NP的安全性,药代动力学和治疗效率
小鼠败血症模型,还研究了NP对免疫和血管稳态的影响(AIM 3)。
如果成功,这项拟议的研究将创建一种创新,安全和有效的治疗方法
败血症。这种范式转移疗法对败血症的转化成功可以显着改善预后
这种严重疾病会导致世界各地五分之一的死亡并减少巨大的财务状况
它给医疗保健系统带来的负担(例如,美国的Medicare成本约为415亿美元)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10612911 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9481524 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9177485 - 财政年份:2016
- 资助金额:
$ 19.44万 - 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
- 批准号:
9079433 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Pathogenicity of the emerging pathogen Kingella kingae
新出现的病原体金氏菌的致病性
- 批准号:
10559927 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Evaluating Mycobacterium avium glycopeptidolipids as key factors in the transition from biofilm to macrophages
评估鸟分枝杆菌糖肽脂作为从生物膜向巨噬细胞转变的关键因素
- 批准号:
10429772 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别: