Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
基本信息
- 批准号:10448923
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-22 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAntibiotic TherapyAntibioticsApoptosisBacteriaBehaviorBiodistributionBlood VesselsBone MarrowCell DeathCell membraneCellsCessation of lifeClinical ResearchCoinComplexDataDevelopmentDiseaseDoseDrug KineticsEndothelial CellsEndotheliumEnergy SupplyEscherichia coliFamilyFinancial HardshipFormulationFunctional disorderFutureGoalsHealthcare SystemsHomeostasisHydrogen PeroxideImmuneImmune responseImmune systemIn VitroInfectionInflammasomeInflammationInflammatoryInjectionsLeadLipidsMaximum Tolerated DoseMedicareModelingMusOxidative StressPathway interactionsPerformancePharmaceutical PreparationsPreparationProcessPrognosisPropertyReportingResuscitationRifampinSafetySepsisSystemTNF geneTherapeuticTherapeutic StudiesTransportationTreatment EfficacyVascular SystemWorkbiomaterial compatibilitycalcium phosphatececal ligation puncturecell injuryclinical applicationclinical translationcombatcostcytokinedelivery vehicledrug release profileeffective therapyefficacious treatmentendothelial dysfunctionextracellularhemodynamicsimprovedin vivoinnovationmacrophagenanoparticlenanoparticle deliverynicotinamide-beta-ribosidenovel therapeuticsorgan injurypreclinical studypreventsuccesstherapeutic nanoparticlestherapeutically effectiveuptake
项目摘要
Project Summary
Sepsis is a complex disorder caused by a dysregulated host response to infection. Current sepsis therapeutic
strategies do not adequately address immune dysregulation and endothelial dysfunction. NAD+ can potentially
be an efficient therapeutic molecule for sepsis, but its therapeutic efficacy is hindered by its inability to pass
through the cell membrane. Extracellular NAD+ has to be degraded into NAD+ precursors (e.g., nicotinamide and
nicotinamide riboside), which can be taken up by cells and subsequently enhance intracellular NAD+ biosynthesis.
However, this conversion process is inefficient. Such a limitation in NAD+ intracellular transportation drastically
decreases the bioactivity of NAD+ and necessitates an extremely high dose for effective therapy.
We aim to develop an innovative, safe, and effective sepsis therapy utilizing NAD+ delivery nanoparticles (NPs),
which can directly (i.e., without being converted to NAD+ precursors) and efficiently replenish the cellular NAD+
pool, in combination with a broad-spectrum antibiotic. To achieve this goal, we formulated a family of NAD+ or
NAD+/antibiotic (e.g., rifampicin (Rif)) loaded lipid (LP)-coated calcium phosphate nanoparticles (NPs) (coined
as NAD+ loaded NPs including NAD+-LP-CaP and NAD+-Rif-LP-CaP). The NAD+ loaded NPs possess a number
of desirable properties including high loading content, high stability, pH-responsive drug release profiles, and
endosomal escape capability. Despite the therapeutic potential of NAD+, there is no prior report on in vivo studies
using NAD+ NPs for therapeutic studies including sepsis. Our preliminary data has demonstrated that NAD+-LP-
CaP can suppress the release of pro-inflammatory cytokines and prevent inflammation-induced cell death and
endothelium disruption. Therefore, NAD+ loaded NPs can potentially help maintain homeostasis of both the
immune system and the vascular system. Our NAD+ loaded NPs successfully treated LPS- and bacteria-induced
sepsis in vivo. They were able to accumulate in the sepsis injured organs and mitigate multiple organ injury.
Compared with free NAD+, NAD+ loaded NPs showed significantly improved therapeutic efficacies.
For this proposed work, we plan to further optimize the NAD+ loaded NPs to achieve even higher drug loading
content and efficiency (Aim 1). The therapeutic mechanism of NAD+-LP-CaP will be studied in vitro in order to
gain a better understanding of how the NAD+ loaded NPs suppress inflammation and also protect cells including
immune cells and endothelial cells from inflammation-induced cell damage (Aim 2). Finally, we will systematically
determine the safety, pharmacokinetics, and therapeutic efficacy of the NAD+ loaded NPs in two representative
mouse sepsis models, and also study the NP’s impact on immune and vascular homeostasis (Aim 3).
If successful, this proposed study will create an innovative, safe, and effective therapeutic approach for treating
sepsis. A translational success of this paradigm-shift therapy for sepsis could significantly improve the prognosis
of this serious disease that causes one in five deaths around the world and decrease the tremendous financial
burden it brings to the healthcare systems (e.g., around $41.5 billion cost in Medicare in the US).
项目摘要
败血症是一种复杂的疾病,由宿主对感染的反应失调引起。目前脓毒症的治疗
策略没有充分解决免疫失调和内皮功能障碍。NAD+可能会
是一种有效的脓毒症治疗分子,但其治疗效果因其无法通过而受到阻碍
通过细胞膜。胞外NAD+必须被降解成NAD+前体(例如,烟酰胺和
烟酰胺核苷),它可以被细胞摄取,从而促进细胞内NAD+的生物合成。
然而,这种转换过程效率很低。这种对NAD+细胞内转运的限制
降低NAD+的生物活性,需要极高的剂量才能有效治疗。
我们的目标是利用NAD+递送纳米粒(NPs)开发一种创新、安全和有效的脓毒症治疗方法。
它可以直接(即,不转化为NAD+前体)并有效地补充细胞内的NAD+
泳池,与广谱抗生素相结合。为了实现这一目标,我们制定了NAD+或
NAD+/抗生素(例如,利福平(Rif))负载脂质(LP)包裹的磷酸钙纳米粒(NPs)(称为
作为NAD+携带的NP,包括NAD+-LP-CAP和NAD+-Rif-LP-CAP)。NAD+加载的NP具有多个
具有理想的性能,包括高载药量、高稳定性、对pH敏感的药物释放曲线,以及
内体逃逸能力。尽管NAD+具有治疗潜力,但之前还没有关于体内研究的报告
使用NAD+NPs进行包括脓毒症在内的治疗研究。我们的初步数据表明,NAD+-LP-
CAP可以抑制促炎细胞因子的释放,防止炎症诱导的细胞死亡和
内皮细胞破坏。因此,NAD+负载的NPs可以潜在地帮助维持两者的动态平衡
免疫系统和血管系统。我们的NAD+负载纳米粒成功治疗了内毒素和细菌诱导的
体内败血症。它们能够在脓毒症损伤的器官中蓄积,减轻多器官损伤。
与游离NAD+相比,负载NAD+纳米粒的治疗效果显著提高。
在这项拟议的工作中,我们计划进一步优化负载NAD+的NPs,以实现更高的载药量
内容和效率(目标1)。NAD+-LP-CAP的治疗机制将在体外进行研究,以期
更好地了解NAD+负载的NPs如何抑制炎症并保护细胞,包括
免疫细胞和内皮细胞免受炎症诱导的细胞损伤(目标2)。最后,我们将系统地
确定NAD+负载纳米粒在两个有代表性的患者中的安全性、药代动力学和治疗效果
建立小鼠脓毒症模型,并研究NP对免疫和血管内稳态的影响(目标3)。
如果成功,这项拟议的研究将创造一种创新、安全和有效的治疗方法。
败血症。这种范式转换疗法治疗脓毒症的翻译成功可以显著改善预后。
这种严重的疾病导致全世界五分之一的人死亡,并减少了巨大的经济损失
它给医疗系统带来了负担(例如,美国的联邦医疗保险成本约为415亿美元)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10612911 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 19.44万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9481524 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9177485 - 财政年份:2016
- 资助金额:
$ 19.44万 - 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
- 批准号:
9079433 - 财政年份:2013
- 资助金额:
$ 19.44万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Discovery Early Career Researcher Award