Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
基本信息
- 批准号:10612911
- 负责人:
- 金额:$ 22.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-22 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAntibiotic TherapyAntibioticsApoptosisBacteriaBehaviorBiodistributionBlood VesselsBone MarrowCell Death InductionCell membraneCellsCessation of lifeClinical ResearchCoinComplexCytoprotectionDataDevelopmentDiseaseDoseDrug KineticsEndosomesEndothelial CellsEndotheliumEnergy SupplyEscherichia coliFamilyFinancial HardshipFormulationFunctional disorderFutureGoalsHealthcare SystemsHomeostasisHydrogen PeroxideImmuneImmune responseImmune systemIn VitroInfectionInflammasomeInflammationInflammatoryInjectionsLipidsMacrophageMaximum Tolerated DoseMedicareModelingMusNiacinamideOxidative StressPathway interactionsPerformancePharmaceutical PreparationsPreparationProcessPrognosisPropertyReportingResuscitationRifampinSafetySepsisSystemTNF geneTherapeuticTherapeutic StudiesTransportationTreatment EfficacyVascular SystemWorkbiomaterial compatibilitycalcium phosphate coatingcecal ligation puncturecell injuryclinical applicationclinical translationcombatcostcytokinedelivery vehicledrug release profileeffective therapyefficacious treatmentendothelial dysfunctionextracellularhemodynamicsimprovedin vivoinnovationnanoparticlenanoparticle deliverynicotinamide-beta-ribosidenovel therapeuticsorgan injurypreclinical studypreventsuccesstherapeutic nanoparticlestherapeutically effectiveuptake
项目摘要
Project Summary
Sepsis is a complex disorder caused by a dysregulated host response to infection. Current sepsis therapeutic
strategies do not adequately address immune dysregulation and endothelial dysfunction. NAD+ can potentially
be an efficient therapeutic molecule for sepsis, but its therapeutic efficacy is hindered by its inability to pass
through the cell membrane. Extracellular NAD+ has to be degraded into NAD+ precursors (e.g., nicotinamide and
nicotinamide riboside), which can be taken up by cells and subsequently enhance intracellular NAD+ biosynthesis.
However, this conversion process is inefficient. Such a limitation in NAD+ intracellular transportation drastically
decreases the bioactivity of NAD+ and necessitates an extremely high dose for effective therapy.
We aim to develop an innovative, safe, and effective sepsis therapy utilizing NAD+ delivery nanoparticles (NPs),
which can directly (i.e., without being converted to NAD+ precursors) and efficiently replenish the cellular NAD+
pool, in combination with a broad-spectrum antibiotic. To achieve this goal, we formulated a family of NAD+ or
NAD+/antibiotic (e.g., rifampicin (Rif)) loaded lipid (LP)-coated calcium phosphate nanoparticles (NPs) (coined
as NAD+ loaded NPs including NAD+-LP-CaP and NAD+-Rif-LP-CaP). The NAD+ loaded NPs possess a number
of desirable properties including high loading content, high stability, pH-responsive drug release profiles, and
endosomal escape capability. Despite the therapeutic potential of NAD+, there is no prior report on in vivo studies
using NAD+ NPs for therapeutic studies including sepsis. Our preliminary data has demonstrated that NAD+-LP-
CaP can suppress the release of pro-inflammatory cytokines and prevent inflammation-induced cell death and
endothelium disruption. Therefore, NAD+ loaded NPs can potentially help maintain homeostasis of both the
immune system and the vascular system. Our NAD+ loaded NPs successfully treated LPS- and bacteria-induced
sepsis in vivo. They were able to accumulate in the sepsis injured organs and mitigate multiple organ injury.
Compared with free NAD+, NAD+ loaded NPs showed significantly improved therapeutic efficacies.
For this proposed work, we plan to further optimize the NAD+ loaded NPs to achieve even higher drug loading
content and efficiency (Aim 1). The therapeutic mechanism of NAD+-LP-CaP will be studied in vitro in order to
gain a better understanding of how the NAD+ loaded NPs suppress inflammation and also protect cells including
immune cells and endothelial cells from inflammation-induced cell damage (Aim 2). Finally, we will systematically
determine the safety, pharmacokinetics, and therapeutic efficacy of the NAD+ loaded NPs in two representative
mouse sepsis models, and also study the NP’s impact on immune and vascular homeostasis (Aim 3).
If successful, this proposed study will create an innovative, safe, and effective therapeutic approach for treating
sepsis. A translational success of this paradigm-shift therapy for sepsis could significantly improve the prognosis
of this serious disease that causes one in five deaths around the world and decrease the tremendous financial
burden it brings to the healthcare systems (e.g., around $41.5 billion cost in Medicare in the US).
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 22.99万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 22.99万 - 项目类别:
Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
- 批准号:
10630541 - 财政年份:2023
- 资助金额:
$ 22.99万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10448923 - 财政年份:2022
- 资助金额:
$ 22.99万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 22.99万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9481524 - 财政年份:2017
- 资助金额:
$ 22.99万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9177485 - 财政年份:2016
- 资助金额:
$ 22.99万 - 项目类别:
Targeted Therapy of Neuroendocrine Cancers Via the Notch Signaling Pathway
通过Notch信号通路靶向治疗神经内分泌癌
- 批准号:
9079433 - 财政年份:2013
- 资助金额:
$ 22.99万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 22.99万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 22.99万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 22.99万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 22.99万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 22.99万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 22.99万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 22.99万 - 项目类别:
Discovery Early Career Researcher Award