Robust ultra-high sensitivity proteomic technologies for limited samples

适用于有限样品的稳健超高灵敏度蛋白质组技术

基本信息

  • 批准号:
    10448500
  • 负责人:
  • 金额:
    $ 41.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The majority of highly diverse biological processes are enabled through proteins, protein post-translational modifications/proteoforms, protein interactions, PIs (e.g., protein-protein, PPIs, protein- ligand, PLIs), and aberrations of abundances, activities, functions, and integrity of such interactions can lead to severe diseases, including cancer. Furthermore, disruption of these protein-based characteristics by novel targeted therapies can be an important biomarker for the response to these drugs in personalized medicine approaches. Clinical and biological specimens are often available in limited amounts, which greatly hampers the progress in diagnostics, therapy development, and biomedical research. Microbiopsy and liquid biopsies containing rare cell populations such as circulating tumor cells, hematopoietic stem cells (HSCs) and immune cells may contain only low thousands or hundreds of cells and be heterogeneous. Traditional techniques to study proteomic profiles, proteoforms, protein complexes, and PPIs (e.g., conventional proteomics, NMR, X-ray crystallography, yeast two-hybrid screening and immunoaffinity purification (IP) followed by mass spectrometry (MS)) cannot be readily used for the analysis of small cell populations, microscopic clinical samples and individual cells mainly due to limitations in sensitivity. Therefore, many biological and clinically relevant studies are not undertaken because of the lack of technology for such low level samples. Here, we propose to develop analytical platforms that will enable high sensitivity analysis of scarce samples at the level of digests, intact proteoforms, and native complexes. This task will demand the development of novel approaches in sample preparation, ulra-low flow liquid phase separations interfaced with MS, MS data acquisition, and data analysis. Developing such novel methods for thorough profiling of microscale samples and integrating them in innovative “plug-and-play” automated platforms capable of efficient and high sensitivity characterization of intact proteoforms, protein complexes and PTMs by MS will be highly desirable for gaining biological insights into molecular mechanisms of the disease and discovery of therapeutic targets and biomarkers for diagnostic and prognostic purposes. The developed platforms will be evaluated using well- controlled model systems and applied in the most clinically relevant settings to examine (1) model systems for cell differentiation and activation; (2) the interactome and biological role of STAT3, the transcription factor which is aberrantly activated in the vast majority of ovarian cancer cell lines and primary samples; and (2) MHC-associated neontigenic peptides.
项目摘要 大多数高度多样化的生物过程是通过蛋白质,蛋白质翻译后 修饰/蛋白质形式,蛋白质相互作用,PI(例如,蛋白质-蛋白质,PPI,蛋白质-配体,PLI),和 这种相互作用的丰度、活性、功能和完整性的异常可导致严重的疾病, 包括癌症此外,通过新的靶向疗法破坏这些基于蛋白质的特征, 可以是个体化治疗方法中对这些药物反应的重要生物标志物。临床 生物标本的数量往往有限,这极大地阻碍了 诊断、治疗开发和生物医学研究。显微活检和液体活检含有罕见的 细胞群如循环肿瘤细胞、造血干细胞(HSC)和免疫细胞可 仅包含几千或几百个细胞并且是异质的。传统技术研究 蛋白质组学谱、蛋白质形式、蛋白质复合物和PPI(例如,常规蛋白质组学、核磁共振、X射线 晶体学、酵母双杂交筛选和免疫亲和纯化(IP),然后质谱 (MS))不能容易地用于分析小细胞群、显微镜临床样品和 这主要是由于灵敏度的限制。因此,许多生物学和临床相关研究 由于缺乏这种低水平样品的技术,因此没有进行。在此,我们建议 开发分析平台,以便能够对稀缺样品进行高灵敏度分析, 蛋白酶体、完整蛋白酶体和天然复合物。这就要求小说的发展 样品制备方法,超低流量液相分离与MS接口,MS数据 采集和数据分析。开发这种新的方法来彻底分析微尺度样品 并将其集成到创新的“即插即用”自动化平台中, 通过MS表征完整的蛋白质型、蛋白质复合物和PTM对于获得 对疾病分子机制的生物学见解和治疗靶点的发现, 用于诊断和预后目的的生物标志物。开发的平台将使用良好的- 控制模型系统,并应用于最临床相关的设置,以检查(1)模型系统, 细胞分化和活化;(2)转录因子STAT 3的相互作用和生物学作用 其在绝大多数卵巢癌细胞系和原代样品中异常活化;和(2) MHC相关的促凋亡肽。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander R. Ivanov其他文献

Single-cell omic molecular profiling using capillary electrophoresis-mass spectrometry
使用毛细管电泳-质谱法的单细胞组学分子分析
  • DOI:
    10.1016/j.trac.2023.117117
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Ketki Bagwe;Noah Gould;Kendall R. Johnson;Alexander R. Ivanov
  • 通讯作者:
    Alexander R. Ivanov
Multimode chromatography-based techniques for high purity isolation of extracellular vesicles from human blood plasma.
基于多模式色谱的技术,用于从人血浆中高纯度分离细胞外囊泡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan Zimmerman;G. P. de Oliveira;Xianyi Su;Jacqueline Wood;Zhengxin Fu;Brandy Pinckney;J. Tigges;I. Ghiran;Alexander R. Ivanov
  • 通讯作者:
    Alexander R. Ivanov
Implementation of an enriched membrane protein carrier channel for enhanced detection of membrane proteins in mass spectrometry-based thermal stability assays
实施富集膜蛋白载体通道,以增强基于质谱的热稳定性测定中膜蛋白的检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clifford G. Phaneuf;Alexander R. Ivanov
  • 通讯作者:
    Alexander R. Ivanov

Alexander R. Ivanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander R. Ivanov', 18)}}的其他基金

Robust ultra-high sensitivity proteomic technologies for limited samples
适用于有限样品的稳健超高灵敏度蛋白质组技术
  • 批准号:
    10388993
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:
Robust ultra-high sensitivity proteomic technologies for limited samples
适用于有限样品的稳健超高灵敏度蛋白质组技术
  • 批准号:
    10202666
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:
Robust ultra-high sensitivity proteomic technologies for limited samples
适用于有限样品的稳健超高灵敏度蛋白质组技术
  • 批准号:
    10580146
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:
Robust ultra-high sensitivity proteomic technologies for limited samples
适用于有限样品的稳健超高灵敏度蛋白质组技术
  • 批准号:
    10660980
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 41.18万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 41.18万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 41.18万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 41.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了