Determining how neural coding and readout depend on internal state and past experience

确定神经编码和读出如何依赖于内部状态和过去的经验

基本信息

  • 批准号:
    10456144
  • 负责人:
  • 金额:
    $ 61.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Sensory representations in the brain and an animal’s perception change in many ways over many time scales. Over tens or hundreds of milliseconds, ongoing neuronal activity contributes substantially to response variability in primary sensory areas. Effort and arousal typically vary over seconds or minutes, and are also associated with major changes in sensory representations and behavioral performance. Perceptual learning occurs over hours and days, imparting new perceptual capabilities. Working with all these forms of variability in stimulus processing, the brain maintains (in the case of ongoing activity) and improves (in the case of arousal and learning) behavioral outcomes. It is commonly assumed that maintenance and improvements in behavioral outcome depend primarily on changes in the corresponding sensory representation, yet this is far from certain. New methods of two-photon stimulation are ideal for probing how much the contributions of different cortical neurons change across behavioral states or as animals learn new perceptual tasks. The proposed experiments take advantage of the experimental accessibility of stimulus-response associations in primary sensory cortices to identify mechanisms and principles in neuronal circuits that maintain and improve behavioral outcome in the context of brain state changes over many timescales. These studies will test whether the high spatiotemporal variability of ongoing activity reflects higher-order statistics of neuronal population activity that ensure the most informative stimulus processing and best behavioral outcomes. The impact of effort and arousal will be addressed at cellular resolution by identifying changes in population representations and readout in primary sensory cortex between different behavioral states and during saccadic suppression. Perceptual learning experiments will probe the contributions to behavioral performance of individual neurons in the olfactory bulb, primary auditory cortex, and primary visual cortex, and determine how those contributions change and can be manipulated over the course of perceptual learning. Collectively, these experiments will provide a far more precise and granular view of how sensory representations vary over different time scales, and new information on how the decoding of those representations can change over time.
大脑中的感觉表征和动物的感知会在许多时间尺度上以多种方式发生变化。 在数十或数百毫秒内,持续的神经元活动对反应有很大贡献 主要感觉区域的变化。努力和觉醒通常会在几秒钟或几分钟内发生变化,并且也会变化 与感官表征和行为表现的重大变化相关。感性学习 发生数小时和数天,赋予新的感知能力。处理所有这些形式的可变性 刺激处理,大脑维持(在持续活动的情况下)和改善(在唤醒的情况下) 和学习)行为结果。 人们普遍认为行为结果的维持和改善主要取决于 相应的感官表征会发生变化,但这还远不确定。双光子新方法 刺激对于探测不同皮层神经元的贡献在不同时期的变化程度是理想的。 行为状态或动物学习新的感知任务。所提出的实验利用了 初级感觉皮层刺激-反应关联的实验可及性,以识别 神经元回路中维持和改善行为结果的机制和原理 大脑状态在许多时间尺度上发生变化。这些研究将测试是否存在高时空变异性 正在进行的活动反映了神经元群体活动的高阶统计数据,确保提供最丰富的信息 刺激处理和最佳行为结果。努力和觉醒的影响将在 通过识别群体表征的变化和初级感觉皮层的读数来实现细胞分辨率 不同行为状态之间以及扫视抑制期间。感知学习实验将 探究嗅球、初级听觉中单个神经元对行为表现的贡献 皮层和初级视觉皮层,并确定这些贡献如何变化以及如何被操纵 感性学习的过程。 总的来说,这些实验将为感官如何 表示在不同的时间尺度上有所不同,并且关于如何解码这些表示的新信息 表述可能会随着时间而改变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dietmar Plenz其他文献

Dietmar Plenz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dietmar Plenz', 18)}}的其他基金

Determining how neural coding and readout depend on internal state and past experience
确定神经编码和读出如何依赖于内部状态和过去的经验
  • 批准号:
    10231069
  • 财政年份:
    2018
  • 资助金额:
    $ 61.59万
  • 项目类别:
Determining how neural coding and readout depend on internal state and past experience
确定神经编码和读出如何依赖于内部状态和过去的经验
  • 批准号:
    9983226
  • 财政年份:
    2018
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal avalanches in the neocortex
新皮质中的神经元雪崩
  • 批准号:
    9152096
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal Avalanches in the Neocortex
新皮质中的神经元雪崩
  • 批准号:
    10703916
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal Avalanches in the Neocortex
新皮质中的神经元雪崩
  • 批准号:
    10929810
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neural network physiology in cortex and basal ganglia
皮层和基底神经节的神经网络生理学
  • 批准号:
    7312886
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal avalanches in the neocortex
新皮质中的神经元雪崩
  • 批准号:
    8745708
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal avalanches in the neocortex
新皮质中的神经元雪崩
  • 批准号:
    7594546
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
BRAIN project (Plenz): Readout and Control of Spatiotemporal Neuronal Codes of Behavior
BRAIN 项目(Plenz):时空神经元行为代码的读出和控制
  • 批准号:
    10266639
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:
Neuronal avalanches in the neocortex
新皮质中的神经元雪崩
  • 批准号:
    9357276
  • 财政年份:
  • 资助金额:
    $ 61.59万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.59万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了