Ethics Core (FABRIC)
道德核心 (FABRIC)
基本信息
- 批准号:10473062
- 负责人:
- 金额:$ 54.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-08 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaArtificial IntelligenceBehavioral ResearchBenefits and RisksBioethicsBiomedical ResearchBridge to Artificial IntelligenceCatalogsClimactericClinicalCollaborationsCollectionCommunitiesConsentDataData CollectionData ProtectionData SetDevelopmentEconomicsEnsureEnvironmentEthical IssuesEthicsEuropeanFoundationsFutureGenerationsGuidelinesHealth Care ResearchHealthcareHumanIndividualInformaticsInfrastructureKnowledgeLawsLearningLiteratureMachine LearningMedicinePersonsPrivacyProcessPublic PolicyPublic RelationsReflex actionRegulationResearchResearch EthicsRightsRunningSocietiesSurveysSustainable DevelopmentTechnologyTimeTrustUnconscious StateVisionWorkWorld Health Organizationadverse outcomeclinical decision-makingcommunity engagementdata managementdecision making algorithmdigitaldigital healthdistrustexperiencehealth care deliveryhuman centered designimplementation scienceimprovedinterdisciplinary approachlegal implicationmultidisciplinaryoutreachpreventprogramsracial biasresponsescaffoldsocialsuccesssymposiumtechnology developmenttooltrustworthinessusabilitywillingness
项目摘要
Bridge2AI: a FAIR AI BRIDGE Center (FABRIC) Ethics Core Summary
The use of artificial intelligence (AI), and particularly machine learning (ML), in healthcare opens up many
opportunities to improve healthcare and biomedical research. However, AI/ML also raise important issues that
implicate ethics and trust, including defining parameters for consent and re-use of personal data, protecting
privacy, ensuring transparency and engagement with stakeholders about this research, and developing and
deploying tools that are useful and valid for all people. Without an ethically robust set of principles and practices
that are generalizable and reusable in a wide range of biomedical environments, AI/ML could violate personal
rights, widen the gap between fairness and equality, and fan the flames of mistrust, as exemplified by recent
work showing how racial bias can influence clinical decision algorithms. Our vision for the FAIR AI Bridge Center
- Ethics Core (FABRIC-Ethics) is to ensure that AI/ML is developed and applied in an ethical and trustworthy
manner. FABRIC-Ethics will support the Bridge2AI program to become sustainable by making it more ethical
and trustworthy by the end of the four-year project period.
To realize this vision, we will use an iterative and reflective four-step cycle: 1) Scaffold, 2) Assess, 3) Facilitate
and 4) Evaluate and educate, or SAFE, to provide a platform for convening, analyzing and curating, public
relations and original research in a multidisciplinary manner. We will work with the Bridge2AI program to
formulate ethical and trustworthy principles for AI/ML (ETAI) to address existing and future practices in
biomedical AI research and applications. These include the collection and management of data, the development
and deployment of AI/ML technologies and AI/ML applications. In close collaboration with the Bridge2AI program
and its Data Generation Projects (DGPs), we will conduct a closed- and open-ended survey, discuss priorities
and experiences with Bridge2AI DGPs, and develop an open, curated catalog of relevant literature. These efforts
will run in parallel with multiple mechanisms for building a learning ETAI community, convening Bridge2AI data
generation projects to distill best practices, and organizing studio sessions to support contact with the other core
areas of the Bridge2AI Center and the broader community. Our core will further develop a digital health checklist
and framework that prepares Bridge2AI DGPs to evaluate: 1) access and usability, 2) risks and benefits, 3)
privacy and 4) data management. We will work with the Bridge2AI DGPs to share knowledge about ETAI, inform
the development of principles and best practices, and to set up conferences for sustainable development of ETAI
culture beyond Bridge2AI. The team assembled for the core has expertise in a wide range of areas, including
bioethics, digital health research ethics, law, public policy, AI/ML, data protection, informatics, medicine, human-
centered design, implementation science, and community engagement. To ensure success, FABRIC-Ethics will
be led by four PIs with a proven track record in multidisciplinary approaches to the study of ethical issues in
technology, center management, and core support.
Bridge 2AI:一个公平的AI BRIDGE中心(FABRIC)道德核心摘要
人工智能(AI),特别是机器学习(ML)在医疗保健领域的应用,
改善医疗保健和生物医学研究的机会。然而,AI/ML也提出了一些重要的问题,
涉及道德和信任,包括定义同意和重新使用个人数据的参数,保护
隐私,确保透明度和利益相关者参与这项研究,并制定和
部署对所有人都有用的工具。如果没有一套道德上健全的原则和实践
在广泛的生物医学环境中可推广和可重用,AI/ML可能会违反个人
这一做法扩大了公平与平等之间的差距,并煽动了不信任的火焰,最近发生的事件就是例证。
研究表明种族偏见如何影响临床决策算法。我们对FAIR AI Bridge Center的愿景
- 伦理核心(FABRIC-Ethics)旨在确保AI/ML以道德和可信的方式开发和应用。
方式FABRIC-Ethics将支持Bridge 2AI计划通过使其更具道德性来实现可持续发展
在四年的项目期结束时,
为了实现这一愿景,我们将使用一个迭代和反思的四步循环:1)支架,2)评估,3)促进
和4)评估和教育,或安全,提供一个平台,召集,分析和策划,公共
以多学科的方式进行关系和原创研究。我们将与Bridge 2AI计划合作,
制定AI/ML(ETAI)的道德和可信原则,以解决现有和未来的实践,
生物医学AI研究与应用。其中包括数据的收集和管理,
以及AI/ML技术和AI/ML应用的部署。与Bridge 2AI项目密切合作
及其数据生成项目(DGP),我们将进行一次封闭式和开放式调查,讨论优先事项,
和Bridge 2AI DGP的经验,并开发一个开放的,精心策划的相关文献目录。这些努力
将与多种机制并行运行,以建立一个学习型ETAI社区,召集Bridge 2AI数据
生成项目以提炼最佳实践,并组织工作室会议以支持与其他核心的联系
Bridge 2AI中心和更广泛的社区。我们的核心将进一步开发数字健康清单
和框架,准备Bridge 2AI DGP评估:1)访问和可用性,2)风险和收益,3)
隐私和4)数据管理。我们将与Bridge 2AI DGP合作,分享有关ETAI的知识,
制定原则和最佳做法,并为ETAI的可持续发展召开会议
超越Bridge 2AI的文化为核心组建的团队在广泛的领域拥有专业知识,包括
生物伦理学,数字健康研究伦理学,法律,公共政策,AI/ML,数据保护,信息学,医学,人类-
以设计为中心,实施科学和社区参与。为了确保成功,FABRIC-Ethics将
由四名在多学科方法研究伦理问题方面有良好记录的PI领导,
技术、中心管理和核心支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley A. Malin其他文献
Dataset Representativeness and Downstream Task Fairness
数据集代表性和下游任务公平性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victor A. Borza;Andrew Estornell;Chien;Bradley A. Malin;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
APPLICATIONS OF HOMOMORPHIC ENCRYPTION
同态加密的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Archer;Lily Chen;Jung Hee Cheon;Ran Gilad;Roger A. Hallman;Zhicong Huang;Xiaoqian Jiang;R. Kumaresan;Bradley A. Malin;Heidi Sofia;Yongsoo Song;Shuang Wang - 通讯作者:
Shuang Wang
Protecting Genomic Sequence Anonymity with Generalization Lattices
- DOI:
10.1055/s-0038-1634025 - 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
Bradley A. Malin - 通讯作者:
Bradley A. Malin
Optimizing word embeddings for small datasets: a case study on patient portal messages from breast cancer patients
- DOI:
10.1038/s41598-024-66319-z - 发表时间:
2024-07-12 - 期刊:
- 影响因子:3.900
- 作者:
Qingyuan Song;Congning Ni;Jeremy L. Warner;Qingxia Chen;Lijun Song;S. Trent Rosenbloom;Bradley A. Malin;Zhijun Yin - 通讯作者:
Zhijun Yin
Computational strategic recruitment for representation and coverage studied in the All of Us Research Program
在“我们所有人”研究计划中研究的代表和覆盖范围的计算战略招聘
- DOI:
10.1038/s41746-025-01804-x - 发表时间:
2025-07-03 - 期刊:
- 影响因子:15.100
- 作者:
Victor A. Borza;Qingxia Chen;Ellen W. Clayton;Murat Kantarcioglu;Lina Sulieman;Yevgeniy Vorobeychik;Bradley A. Malin - 通讯作者:
Bradley A. Malin
Bradley A. Malin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley A. Malin', 18)}}的其他基金
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8695427 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9301793 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9193769 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8548389 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9754854 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
9360125 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8341447 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
A Risk Management Framework for Identifiability in Genomics Research
基因组学研究中可识别性的风险管理框架
- 批准号:
8915734 - 财政年份:2012
- 资助金额:
$ 54.3万 - 项目类别:
Automated Detection of Anomalous Accesses to Electronic Health Records
自动检测电子健康记录的异常访问
- 批准号:
8882547 - 财政年份:2009
- 资助金额:
$ 54.3万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 54.3万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 54.3万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 54.3万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 54.3万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 54.3万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 54.3万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 54.3万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 54.3万 - 项目类别:
Standard Grant














{{item.name}}会员




