Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program

NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心

基本信息

项目摘要

Project Summary: Overall BRIDGE Center The promise of using Big Data for precision medicine, drug discovery, and a host of other challenges has remained elusive. Social and technical barriers have limited our ability to leverage our collective data assets to address biomedical and behavioral health challenges; Artificial Intelligence (AI) solutions present an opportunity to overcome these barriers. The NIH has established the Bridge to Artificial Intelligence (Bridge2AI, or B2AI) program to catalyze AI solutions to a set of community-defined “Grand Challenges.” This concerted effort will lay the groundwork to promote the widespread adoption of AI and to ensure that it leads to trustworthy, inclusive research innovations that have a significant, positive impact on human health. The BRIDGE Center proposal includes Administrative, Teaming, Skills and Workforce Development, and Standards Cores, chosen to coincide with the Core teams’ unique and complementary expertise in large-scale team science, standards development and dissemination, innovative training approaches, and community building. The vision for the BRIDGE Center is to engage all participants within and beyond the B2AI community through carefully considered social and technical mechanisms and operational excellence, with the goal of creating a dynamic, productive, and inclusive community that builds upon each other’s work in a deeply collaborative manner. The mission of the BRIDGE Center is to complement the Bridge2AI Data Generation Projects (DGPs) by supporting the integration, dissemination, and evaluation of Bridge2AI work products and teams. We propose to achieve that mission through three aims. Aim 1 focuses on integrating across the Bridge2AI Program. Specifically, we will foster group identity to create opportunities and incentives for transdisciplinary learning; establish human & machine-understandable standards, practices, and vocabularies across B2AI; and deploy technology to promote transparency and scalability across the B2AI program. Aim 2 creates and promotes opportunities to evaluate and improve B2AI products and activities including (1) employing community-based evaluation within and across DGPs, (2) deploying data-driven evaluation and improvement of B2AI products and processes, and (3) establishing and maintaining diversity in B2AI data, people, and team structures through a continuous process of evaluation and refinement. Aim 3 focuses on sustainable dissemination of products, knowledge, best practices and “lessons learned” from B2AI thereby ensuring broad, long-lasting distribution and impact. Taken together, these Aims will create a BRIDGE Center that fosters broad community engagement, inclusivity, and trust to successfully integrate activities and knowledge across the B2AI Program; disseminate products, best practices, and skill development materials/activities; and continually assess and improve all aspects of the Bridge2AI program with input from external stakeholder communities.
项目概要:BRIDGE中心整体 将大数据用于精准医疗、药物发现和其他一系列挑战的前景, 仍然难以捉摸社会和技术障碍限制了我们利用集体数据资产的能力, 解决生物医学和行为健康挑战;人工智能(AI)解决方案提供了一个 有机会克服这些障碍。美国国立卫生研究院(NIH)建立了人工智能之桥(Bridge 2AI, 或B2 AI)计划,以催化AI解决方案,以应对一系列社区定义的“重大挑战”。这种协调一致 这一努力将为促进人工智能的广泛采用奠定基础,并确保它导致 值得信赖的,包容性的研究创新,对人类健康产生重大的积极影响。 BRIDGE中心提案包括行政、团队、技能和劳动力发展,以及 标准核心,选择与核心团队在大规模生产方面的独特和互补的专业知识相吻合 团队科学、标准制定和传播、创新培训方法和社区 建设BRIDGE中心的愿景是吸引B2 AI社区内外的所有参与者 通过仔细考虑的社会和技术机制以及卓越的运营, 创建一个充满活力,富有成效和包容性的社区,以深入的方式建立在彼此的工作基础上 合作的方式。BRIDGE中心的使命是补充Bridge 2AI数据生成 通过支持Bridge 2AI工作产品的集成、传播和评估, 团队我们建议通过三个目标来实现这一使命。目标1侧重于跨 Bridge 2AI程序。具体而言,我们将培养群体认同感,为以下方面创造机会和激励措施: 跨学科学习;建立人类和机器可理解的标准,实践和词汇 部署技术以提高整个B2 AI计划的透明度和可扩展性。目的2 创造并促进评估和改进B2 AI产品和活动的机会,包括(1) 在DGP内部和DGP之间采用基于社区的评估,(2)部署数据驱动的评估, 改进B2 AI产品和流程,以及(3)建立和维护B2 AI数据的多样性, 人员和团队结构,通过持续的评估和改进过程。目标3侧重于 可持续地传播B2 AI的产品、知识、最佳实践和“经验教训”, 确保广泛、持久的传播和影响。这些目标合在一起,将创建一个桥梁中心 促进广泛的社区参与,包容性和信任,以成功地整合活动, 跨B2 AI计划的知识;传播产品,最佳实践和技能发展 材料/活动;并根据以下方面的意见,持续评估和改进Bridge 2AI计划的各个方面: 外部利益相关者社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Cecilia Munoz-Torres其他文献

Monica Cecilia Munoz-Torres的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Cecilia Munoz-Torres', 18)}}的其他基金

Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program
NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心
  • 批准号:
    10661023
  • 财政年份:
    2022
  • 资助金额:
    $ 269.27万
  • 项目类别:
BRIDGE Center Standards Core
BRIDGE 中心标准核心
  • 批准号:
    10473242
  • 财政年份:
    2022
  • 资助金额:
    $ 269.27万
  • 项目类别:
BRIDGE Center Standards Core
BRIDGE 中心标准核心
  • 批准号:
    10661029
  • 财政年份:
    2022
  • 资助金额:
    $ 269.27万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 269.27万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 269.27万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 269.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了