BRIDGE Center Standards Core
BRIDGE 中心标准核心
基本信息
- 批准号:10473242
- 负责人:
- 金额:$ 139.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionAnatomyArtificial IntelligenceAwarenessBackBehavioralBenchmarkingBridge to Artificial IntelligenceBusinessesCodeCommunitiesConsultationsConsumptionDataData CollectionData DiscoveryData EngineeringData ProvenanceData ScientistData SetDepositionDevelopmentDisciplineDiseaseDocumentationEcosystemElementsEnsureEnvironmentEquipment and supply inventoriesEvaluationFAIR principlesGenerationsGenesGoalsHumanKnowledgeLanguageLicensingLinkMachine LearningModalityModelingModernizationMolecularMorphologic artifactsOntologyOutputPhenotypeProtocols documentationProviderQuality ControlReadinessRegistriesReproducibilityResearchResearch PersonnelResourcesSeaSemanticsServicesSourceSpecific qualifier valueSpecificityStandardizationSystemTerminologyTimeTrainingTranslational ResearchUnited States National Institutes of HealthUpdateVariantVocabularyWorkdashboarddata disseminationdata ingestiondata modelingdata qualitydata reusedata standardsempoweredinsightinteroperabilitylarge datasetsmachine learning modelnovelopen sourceprogramsquality assuranceresponseskillstoolweb portalworking group
项目摘要
BRIDGE Center Standards Core Project Summary
AI offers great potential for the discovery of novel biomedical insights from linkages between disparate,
cross-domain datasets. Unfortunately, traditional hypothesis-driven datasets tend to be narrowly focused on
the targeted problem domain with little consideration to “AI-readiness”. To best enable the use of such datasets
in data-driven and cross-domain discovery, they must be made Findable, Accessible, Interoperable, and
Reusable (FAIR). Lack of FAIRness is particularly problematic for AI, which is data-hungry. To fully leverage the
power of AI approaches, researchers need to find and reuse data to combine into larger datasets, and the data
must be interoperable or harmonized to be combined meaningfully. Transforming pre-existing datasets into
AI-ready data is challenging, requiring extensive linking and curation by human experts. This challenge is
exacerbated when annotating and linking data across domains, where standards may be disparate in purpose
and specificity. Finally, many datasets do not adhere to best practices in data transparency, including content
attribution and conditions on distribution and reuse. These additional considerations of Traceability, Licensing,
and Connectedness create an operationalized model for FAIR: FAIR-TLC.
Overcoming the barriers to FAIR-TLC is key to translational science and AI-driven biomedical discovery. Our
team has led standards development efforts in numerous large consortia, including the GA4GH, HL7, and
N3C. Our standards for representing biomedical concepts have been widely adopted, including those for
human phenotypes (e.g., HPO, GA4GH Phenopackets), diseases (NCIt, Mondo, ICD-11), genes (Gene
Ontology), anatomy (Uberon), and molecular variation (GA4GH VRS). We have developed standards and tools
to address data provenance (SEPIO), contributions (Contributor Attribution Model), licensing barriers (Data
Use Ontology, Reusable Data Project), and connectivity (Linked data Model Language, LinkML).
We will build on our previous work, collaborative skills, and technical knowledge to develop a framework to
enable the harmonization of standards across biomedical domains. We will form working groups with
representatives of the Data Generation Projects (DGPs) to document use cases and synthesize data standard
requirements. We will provide protocols and training for specifying standards, and provide concierge services
in support of all deliverables and activities. We will create a version-controlled Bridge2AI Standards Registry to
inventory standards for use by the DGPs, specified in the modality-agnostic LinkML framework, discoverable
through the interactive Standards Hub, and automatically exportable to technical artifacts through our Data
Transformation Toolbox. We will build a Standards Evaluation Dashboard for assessment and discovery of
standards in datasets from Bridge2AI Data Generation Projects. We will promote best practices in the
transparent and responsible sharing of datasets and ML models through DUO, Datasheets, and Model Cards.
BRIDGE中心标准核心项目摘要
人工智能提供了巨大的潜力,从不同的,
跨域数据集。不幸的是,传统的假设驱动的数据集往往局限于
目标问题域很少考虑“AI就绪性”。为了更好地使用这些数据集,
在数据驱动和跨域发现中,必须使它们可查找、可兼容、可互操作,
可重复使用(公平)。缺乏公平性对于数据饥渴的人工智能来说尤其成问题。为了充分利用
由于人工智能方法的强大功能,研究人员需要找到并重用数据,以便将联合收割机组合成更大的数据集,
必须是可互操作的或协调的,以便有意义地结合起来。将预先存在的数据集转换为
人工智能就绪的数据具有挑战性,需要人类专家进行广泛的链接和管理。这一挑战
当跨域注释和链接数据时,标准的目的可能不同,
和特异性。最后,许多数据集不符合数据透明度方面的最佳实践,包括内容
分配和再利用的归属和条件。可追溯性、许可证、
和连通性为FAIR创建了一个可操作的模型:FAIR-TLC。
克服FAIR-TLC的障碍是转化科学和AI驱动的生物医学发现的关键。我们
该团队领导了许多大型联盟的标准开发工作,包括GA 4GH、HL 7和
N3C我们表示生物医学概念的标准已被广泛采用,包括
人表型(例如,HPO、GA 4GH Phenopackets)、疾病(NCIt、Mondo、ICD-11)、基因(Gene
本体论)、解剖学(Uberon)和分子变异(GA 4GH VRS)。我们开发了标准和工具
解决数据来源(SEPIO)、贡献(贡献者归因模型)、许可障碍(数据
使用本体,可重用数据项目)和连接性(链接数据模型语言,LinkML)。
我们将建立在我们以前的工作,协作技能和技术知识,以制定一个框架,
使生物医学领域的标准协调一致。我们将成立工作组,
数据生成项目(DGP)的代表记录用例并综合数据标准
要求.我们将提供规范标准的协议和培训,并提供礼宾服务
支持所有交付成果和活动。我们将创建一个版本控制的Bridge 2AI标准注册表,
由DGP使用的库存标准,在与模态无关的LinkML框架中指定,
通过交互式标准中心,并通过我们的数据自动导出到技术工件
转换我们将建立一个标准评估仪表板,用于评估和发现
Bridge 2AI数据生成项目的数据集标准。我们将推广最佳做法,
通过DUO、数据表和模型卡透明、负责地共享数据集和ML模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Cecilia Munoz-Torres其他文献
Monica Cecilia Munoz-Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Cecilia Munoz-Torres', 18)}}的其他基金
Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program
NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心
- 批准号:
10661023 - 财政年份:2022
- 资助金额:
$ 139.95万 - 项目类别:
Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program
NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心
- 批准号:
10473239 - 财政年份:2022
- 资助金额:
$ 139.95万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 139.95万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 139.95万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 139.95万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 139.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 139.95万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 139.95万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 139.95万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 139.95万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 139.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 139.95万 - 项目类别:
Research Fellowships