High-resolution genomic mapping of ssDNA and associated proteins for Alzheimer's disease research
用于阿尔茨海默病研究的 ssDNA 和相关蛋白的高分辨率基因组图谱
基本信息
- 批准号:10382044
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAntibodiesAutomationAutopsyBRCA1 geneBRCA2 geneBar CodesBenchmarkingBinding ProteinsBiological AssayBiological MarkersBrainCause of DeathCell NucleusCell modelCell physiologyCellsChIP-seqChromatinClinical ResearchComplexDNADNA BindingDNA Repair PathwayDNA mappingDevelopmentDisease ProgressionEpigenetic ProcessFailureGTP-Binding Protein alpha Subunits, GsGenetic TranscriptionGenome StabilityGenomic SegmentGenomic approachGenomicsGoalsHistonesHumanHybridsInterventionInvadedLesionMammalian CellMapsMeasuresMediatingMethodsMicrococcal NucleaseMolecular ConformationNerve DegenerationNeuronsNucleosomesPathogenesisPathway interactionsPerformancePharmaceutical PreparationsPharmacotherapyPhasePlayPost-Translational Protein ProcessingProcessPrognostic MarkerProteinsProtocols documentationRAD52 geneRNAResearchResearch PersonnelResolutionRoleSS DNA BPSamplingServicesSignal PathwaySignal TransductionSingle-Stranded DNASpecificityStretchingTechnologyYeastsbiomarker discoveryclinical applicationcostdisorder controldrug developmentdrug discoveryds-DNAepigenomicshomologous recombinationimprovedinnovationneuron lossnew therapeutic targetnovelnucleaserecombinational repairrepairedresearch and developmenttargeted biomarkertool
项目摘要
PROJECT SUMMARY
EpiCypher is collaborating with Dr. Jessica Tyler (an expert in aging, DNA repair and epigenetics), to
develop CUT&RUssNTM (Cleavage Under Targets and Release Using single-stranded Nuclease), a first-in-class
single-stranded DNA (ssDNA) mapping technology for research into the early pathogenesis of and possible
interventions for Alzheimer’s Disease (AD). The double-stranded conformation of genomic DNA (dsDNA) is
essential to maintain genome stability. ssDNA forms during many cellular processes, including transcription and
the processing of DNA lesions, and is rapidly sequestered by ssDNA binding proteins (SSBs) (e.g. RPA, RAD51
and BRCA1/BRCA2) to protect and facilitate any needed repair. AD is the most common form of
neurodegeneration, with early pathogenesis / neuronal cell death due in part to the accumulation of DNA damage
as a consequence of defective repair mechanisms (particularly homologous recombination [HR], which is heavily
reliant on ssDNA signaling pathways). Improved methods for detecting and mapping ssDNA and SSB-ssDNA
complexes that accompany DNA damage repair would greatly improve our understanding of how failure of these
pathways contributes to AD, and potentially reveal novel drug targets and biomarkers. However, tools to study
ssDNA-related signaling are lacking. The first innovation of our approach is the development of a novel
immunotethering approach, wherein: 1) an antibody to an ssDNA-associated feature (e.g. SSB) is used to locally
tether an ssDNA-specific nuclease to chromatin in permeabilized nuclei; 2) next, the nuclease is activated to
selectively cleave nearby ssDNA and not dsDNA; and 3) cleaved fragments are collected and sequenced to
yield a precise ssDNA target localization profile. The development of protein A/G (pAG) fused to an ssDNA-
specific nuclease is a key innovation, as it enables the definitive identification of ssDNA associated with any
localizing factor. A second innovation of our approach is the development of nucleosome spike-in controls
containing either ssDNA or dsDNA, which will be used: 1) to confirm nuclease specificity; and 2) to enable
quantitative comparisons in disease / control samples -/+ eventual drug treatment. The goals of this Phase I
project are to develop the CUT&RUssN workflow (Aim 1) and demonstrate its ability to map SSB-ssDNA
complexes in cells, thus enabling the novel study of ssDNA repair pathways in AD models (Aim 2). In Phase II,
we will expand the CUT&RUssN platform to additional chromatin features (e.g. SSBs or histone PTMs) and their
associated cellular mechanisms (e.g. transcription, R-loops, DNA replication). In addition, we will develop robust
protocols for widely studied AD models and human post-mortem brains, including low cell input applications and
assay automation to enable large-scale clinical studies. At the end of Phase II, we will launch a CUT&RUssN
beta-kit and assay services, which will be marketed to researchers, drug developers, and clinicians to accelerate
AD drug discovery.
项目摘要
EpiCypher正在与Jessica泰勒博士(衰老,DNA修复和表观遗传学专家)合作,
开发CUT&RUssNTM(使用单链核酸酶进行靶下切割和释放),
单链DNA(ssDNA)作图技术用于研究早期发病机制和可能的
阿尔茨海默病(AD)的治疗。基因组DNA(dsDNA)的双链构象是
对维持基因组稳定至关重要。ssDNA在许多细胞过程中形成,包括转录和
DNA损伤的处理,并被ssDNA结合蛋白(SSB)(例如RPA、RAD 51)迅速隔离
和BRCA 1/BRCA 2),以保护和促进任何需要的修复。AD是最常见的
神经变性,伴早期发病机制/部分由于DNA损伤累积导致的神经元细胞死亡
由于有缺陷的修复机制(特别是同源重组[HR],
依赖于ssDNA信号传导途径)。检测和定位ssDNA和SSB-ssDNA的改进方法
伴随DNA损伤修复的复合物将极大地提高我们对这些修复失败的理解。
研究表明,这些信号通路有助于AD,并可能揭示新的药物靶点和生物标志物。然而,研究工具
ssDNA相关信号缺乏。我们方法的第一个创新是开发一种小说
1)使用针对ssDNA相关特征(例如SSB)的抗体局部地
将ssDNA特异性核酸酶系在透性化的核中的染色质上; 2)接着,激活核酸酶,
选择性地切割附近的ssDNA而不是dsDNA;和3)收集切割的片段并测序,
产生精确的ssDNA靶定位谱。蛋白A/G(pAG)融合到ssDNA的发展-
特异性核酸酶是一个关键的创新,因为它能够确定性地鉴定与任何
局部化因子我们方法的第二个创新是核小体加标控制的发展
包含ssDNA或dsDNA,其将用于:1)确认核酸酶特异性;和2)使
疾病/对照样品的定量比较-/+最终药物治疗。第一阶段的目标
该项目旨在开发CUT&RUssN工作流程(目标1)并展示其映射SSB-ssDNA的能力
复合物在细胞中,从而使新的研究ssDNA修复途径在AD模型(目的2)。在第二阶段,
我们将把CUT&RUssN平台扩展到其他染色质特征(例如SSB或组蛋白PTM)及其
相关的细胞机制(例如转录、R环、DNA复制)。此外,我们还将大力发展
广泛研究的AD模型和人类死后大脑的方案,包括低细胞输入应用,
检测自动化,支持大规模临床研究。在第二阶段结束时,我们将推出CUT&RUssN
β试剂盒和检测服务,将向研究人员,药物开发人员和临床医生销售,以加速
AD药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael-Christopher Keogh其他文献
Michael-Christopher Keogh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael-Christopher Keogh', 18)}}的其他基金
Scalable and quantitative chromatin profiling from formalin-fixed paraffin-embedded samples
对福尔马林固定石蜡包埋样品进行可扩展和定量的染色质分析
- 批准号:
10696343 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10481225 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10686135 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10758061 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10384022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10622310 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10610898 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10401943 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10257054 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:














{{item.name}}会员




