A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
基本信息
- 批准号:10257054
- 负责人:
- 金额:$ 101.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-05 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcylationAdoptionAnimal ModelAntibodiesAntibody SpecificityAreaArginineBindingBiochemicalBiological AssayBiologyBone MarrowCellsChIP-seqChemicalsChromatinCollectionDataDendritic CellsDevelopmentDiseaseEmploymentEngineeringEnzymesEpigenetic ProcessFeedbackGene Expression RegulationGenesGeneticGenetic TranscriptionGenetic studyGenomicsGoalsHigh Pressure Liquid ChromatographyHistone H3HistonesHumanImmuneImmunologicsImmunologyInflammationInflammatoryInflammatory ResponseLinkLipopolysaccharidesLysineMammalsMass Spectrum AnalysisMethodsMethylationMusNatural Killer CellsNucleosomesOrphanPharmaceutical PreparationsPhasePhosphorylationPost-Translational Protein ProcessingPropertyReagentRecombinantsResearchResearch PersonnelRestRoleRunningSerineSideSite-Directed MutagenesisTechnologyTestingValidationVariantWorkbiomarker discoverycommercializationcross reactivitydaltondrug developmentdrug discoveryepigenomicshuman diseaseimmune system functioninhibitor/antagonistinnovationmacrophagemedical schoolsnovelresearch and developmentresponsescreeningtherapeutic developmenttooltool development
项目摘要
PROJECT SUMMARY
Gene regulation is controlled in part by histone post-translational modifications (PTMs) on nucleosomes.
EpiCypher® is developing fully defined recombinant designer nucleosomes (dNucs) carrying specific histone
PTMs to enable epigenetics research and drug development. The power of EpiCypher’s dNuc platform comes
from its broad chemical diversity. EpiCypher has commercialized > 100 unique dNucs, covering the most widely
studied PTM classes (e.g. lysine methylation / acylation / ubiquitylation, arginine methylation, serine
phosphorylation, etc.) and is leveraging the emergent property of this diversity for a range of high value
applications: 1) antibody specificity testing (NucleoPlex® antibody validation: e.g. chromatinantibodies.com); 2)
ultra-sensitive genomic mapping (CUTANA® CUT&RUN / CUT&Tag assays); and 3) high-throughput
biochemical approaches for drug discovery and inhibitor screening (dCypher® assays). To date, EpiCypher’s
dNuc technology (and related assay platforms) have been focused on PTMs with known associations with
chromatin states and gene regulation. Relying on the field’s largely descriptive histone PTM studies as a guide
is an inefficient way for us to expand our discovery platforms and maximize the potential of our nucleosome
generating capability to target the most functionally important PTMs. Progress on the discovery side has been
hindered by intractability of the multi-copy histone genes for functional genetics studies in mammals (vs. simpler
model organisms). Here, EpiCypher is partnering with Dr. Steven Josefowicz (Weill Cornell Medical
School) to expand epigenetic tool development for immunology research and biomarker discovery. The
innovation of this project is employment of a first-in-class mammalian histone variant H3.3 genetic replacement
method to identify orphaned / underappreciated residues (and PTMs) with roles in macrophage stimulation. We
will then develop new dNucs containing these PTMs and validate their role in macrophage function. For proof of
concept, we developed the histone replacement assay to characterize the role of some highly studied (e.g.
H3.3K4, H3.3K36) and underappreciated (H3.3S31) residues in the macrophage stimulation response, and
showed the resulting data can immediately be used to guide the delivery of new epigenetic reagents and assays
to support the study of immune system function and disease. In Phase II, we will leverage this development
pipeline to identify novel resides vital for macrophage stimulation (Aim 1). Next, we will develop a collection of
dNucs carrying PTMs on these resides, which will be used in NucleoPlex assays to identify best-in-class
antibodies to each target (Aim 2). Finally, we will validate the function of these novel PTMs in immune cell
stimulation using CUT&Tag assays as well as share our expanded reagents and capabilities with key opinion
leaders for external validation (Aim 3) Together, this work will result in the commercialization of an
expanded epigenetics toolbox that will open new avenues of immunological research and drug
development.
项目总结
基因调控部分受控于核小体上的组蛋白翻译后修饰(PTM)。
EpiCypher®正在开发携带特异组蛋白的全定义重组设计核小体(DNucs)
PTMS使表观遗传学研究和药物开发成为可能。EpiCypher的dNuc平台的力量来了
从其广泛的化学多样性。EpiCypher已经将>;100个独特的dNucs商业化,覆盖最广泛的
研究了PTM类别(例如赖氨酸甲基化/酰化/泛素化、精氨酸甲基化、丝氨酸
磷酸化等)并利用这种多样性的新特性来获得高价值的范围
应用:1)抗体特异性检测(NucleoPlex®抗体验证:例如chroinantibodies.com);2)
超灵敏基因组图谱(Cutana®Cut&Run/Cut&Tag分析);以及3)高通量
用于药物发现和抑制剂筛选的生化方法(DCypher®分析)。迄今为止,EpiCypher的
DNuc技术(和相关的检测平台)一直专注于与已知的
染色质状态和基因调控。依赖于该领域主要描述性的组蛋白PTM研究作为指导
对于我们来说,扩展我们的发现平台并最大限度地发挥我们的核小体的潜力是一种低效的方式
产生针对最重要的PTM的能力。发现方面的进展一直是
受阻于用于哺乳动物功能遗传学研究的多拷贝组蛋白基因的难题(与SIMPLE
模型生物)。在这里,EpiCypher正在与Steven Josefowicz博士(Weill Cornell Medical
学校)扩大表观遗传学工具的开发,用于免疫学研究和生物标记物发现。这个
该项目的创新之处在于采用了一种一流的哺乳动物组蛋白变异体H3.3基因替换
识别在巨噬细胞刺激中起作用的孤儿/未被认识残基(和PTM)的方法。我们
然后将开发包含这些PTM的新dNucs,并验证它们在巨噬细胞功能中的作用。为证明
概念,我们发展了组蛋白替代试验,以表征一些高度研究的作用(如:
H3.3K4、H3.3K36)和未被认识的(H3.3S31)残基,以及
结果表明,所得到的数据可以立即用于指导新的表观遗传试剂和分析的交付
支持免疫系统功能与疾病的研究。在第二阶段,我们将利用这一发展
确定新的驻留对巨噬细胞刺激至关重要的管道(目标1)。接下来,我们将开发一组
在这些住宅上携带PTM的dNucs,将用于NucleoPlex分析,以确定同类最佳
针对每个目标的抗体(目标2)。最后,我们将验证这些新的PTM在免疫细胞中的功能
使用切割和标签分析进行刺激,并与关键观点分享我们扩展的试剂和功能
外部验证领导者(目标3)共同努力,这项工作将导致
扩展的表观遗传学工具箱将开辟免疫学研究和药物的新途径
发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael-Christopher Keogh其他文献
Michael-Christopher Keogh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael-Christopher Keogh', 18)}}的其他基金
Scalable and quantitative chromatin profiling from formalin-fixed paraffin-embedded samples
对福尔马林固定石蜡包埋样品进行可扩展和定量的染色质分析
- 批准号:
10696343 - 财政年份:2023
- 资助金额:
$ 101.23万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 101.23万 - 项目类别:
High-resolution genomic mapping of ssDNA and associated proteins for Alzheimer's disease research
用于阿尔茨海默病研究的 ssDNA 和相关蛋白的高分辨率基因组图谱
- 批准号:
10382044 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10481225 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10686135 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10758061 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10384022 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10622310 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10610898 - 财政年份:2021
- 资助金额:
$ 101.23万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10401943 - 财政年份:2021
- 资助金额:
$ 101.23万 - 项目类别:
相似海外基金
Greasing endocytosis in plants - understanding the role of S-acylation in receptor kinase function and internalisation
植物中的润滑内吞作用 - 了解 S-酰化在受体激酶功能和内化中的作用
- 批准号:
BB/Y003756/1 - 财政年份:2024
- 资助金额:
$ 101.23万 - 项目类别:
Research Grant
Ghrelin de-acylation inhibitors as novel compounds for Parkinson's dementia
生长素释放肽去酰化抑制剂作为治疗帕金森痴呆症的新型化合物
- 批准号:
MR/Y503435/1 - 财政年份:2024
- 资助金额:
$ 101.23万 - 项目类别:
Research Grant
S-acylation-dependent regulation of cytokine receptor signaling and cardiac maladaptation
细胞因子受体信号传导和心脏适应不良的 S-酰化依赖性调节
- 批准号:
10561406 - 财政年份:2023
- 资助金额:
$ 101.23万 - 项目类别:
Comprehensive analysis of acidic patch binder using histone acylation catalysts
使用组蛋白酰化催化剂综合分析酸性贴片粘合剂
- 批准号:
22KJ1113 - 财政年份:2023
- 资助金额:
$ 101.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
S-Acylation of transmembrane proteins in the early secretory pathway
早期分泌途径中跨膜蛋白的 S-酰化
- 批准号:
BB/X001504/1 - 财政年份:2023
- 资助金额:
$ 101.23万 - 项目类别:
Research Grant
N-terminal acylation and sorting of Helicobacter pylori lipoproteins and their role in host response to infection
幽门螺杆菌脂蛋白的 N 末端酰化和分选及其在宿主感染反应中的作用
- 批准号:
10584620 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
The Molecular Mechanisms of Glycolytic Enzyme S-acylation in Neurons
神经元糖酵解酶S-酰化的分子机制
- 批准号:
576016-2022 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Anti-CRISPR-mediated Acylation and Bioreversible Esterification for Precision Genome Editing
用于精准基因组编辑的抗 CRISPR 介导的酰化和生物可逆酯化
- 批准号:
10657417 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
High Throughput Screen for Inhibitors of the YEATS2 Histone Acylation Reader
YEATS2 组蛋白酰化酶抑制剂的高通量筛选
- 批准号:
10389517 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Roles of KAT8 complexes in governing histone acylation and mouse cerebral development
KAT8复合物在控制组蛋白酰化和小鼠大脑发育中的作用
- 批准号:
RGPIN-2019-07122 - 财政年份:2022
- 资助金额:
$ 101.23万 - 项目类别:
Discovery Grants Program - Individual