Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
基本信息
- 批准号:10758061
- 负责人:
- 金额:$ 103.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Gene expression is regulated by the complex molecular cross-talk between DNA methylation (DNAme)
and other chromatin features: e.g. histone post-translational modifications (PTMs) and chromatin associated
proteins (ChAPs; transcription factors and chromatin remodelers). Significantly, changes in the chromatin
landscape can have a profound impact on DNAme patterning (and vice versa), and these changes are connected
to development as well as a broad range of diseases (from cancer to neurological disorders). However, our
understanding of how DNAme co-occurs / coordinates with additional chromatin features to control gene
expression is limited by a lack of reliable genomic tools. Here, EpiCypher is partnering with New England Biolabs
(NEB) to develop Targeted Enzymatic Methylation-sequencing (TEM-seqTM), an ultra-sensitive multiomic
mapping technology that delivers high resolution DNAme profiles (5mC/5hmC) at epitope-defined
chromatin features. EpiCypher is leading the development of ultra-sensitive genomic mapping assays that use
CUT&RUN / CUT&Tag methods (under the CUTANA® platform) to generate truly quantitative data using
dramatically reduced cell input and sequencing depth (>10-fold savings on each parameter vs. ChIP-seq).
CUTANA assays are supported by EpiCypher’s proprietary spike-in designer nucleosome (dNuc) technology to
enable technical monitoring and quantitative normalization. The key innovation of the TEM-seq project is the
development of a novel multiomic workflow that marries EpiCypher’s quantitative CUTANA CUT&RUN
technology with unbiased DNAme analysis using NEB’s enzymatic methyl-seq (EM-seq) approach. EM-seq
utilizes the enzymatic conversion of DNAme (5mC / 5hmC) and provides a much-needed alternative to bisulfite
sequencing (BS; a chemical treatment that degrades DNA and has systemic sequence biases) to generate high
resolution, unbiased DNAme profiles with ~10-fold less sample input (vs. BS). In Phase I Aim 1, we will rigorously
validate our TEM-seq workflow in three cell lines, benchmark results against standard CUT&RUN and EM-seq
assays, and further develop EpiCypher’s spike-in controls for compatibility with TEM-seq. We will advance to
Phase II when we demonstrate that TEM-seq generates highly reliable DNAme maps associated with histone
PTMs and ChAPs using <50k cells and <10M reads. In Phase II Aim 2, we will expand development of spike-in
control panels and develop robust protocols for a wide panel of chromatin features (using validated antibodies)
and sample processing methods (fresh, frozen, and fixed), including drug treatment time-course experiments to
enable clinical applications. In Phase II Aim 3, we will develop / validate a TEM-seq beta kit, and also create a
data analysis portal and automated assays to accelerate commercial adoption and enable a high-throughput
service offering. TEM-seq will provide a powerful new tool to expand our understanding of complex chromatin
signaling, further unlocking the potential of epigenetics-targeted drugs and diagnostics.
项目摘要
基因表达受DNA甲基化(DNAme)之间复杂的分子串扰调节。
和其他染色质特征:例如组蛋白翻译后修饰(PTM)和染色质相关的
蛋白质(ChAP;转录因子和染色质重塑)。值得注意的是,
景观可以对DNA模式产生深远的影响(反之亦然),这些变化是相互关联的。
发展以及广泛的疾病(从癌症到神经系统疾病)。但我们的
理解DNAme如何与其他染色质特征共同发生/协调以控制基因
由于缺乏可靠的基因组工具,表达受到限制。在这里,EpiCypher与新英格兰生物实验室合作
(NEB)开发靶向酶促甲基化测序(TEM-seqTM),一种超灵敏的多组
在表位定义的位置提供高分辨率DNAme图谱(5 mC/5 hmC)的映射技术
染色质特征。EpiCypher正在领导超灵敏基因组图谱分析的开发,
CUT&RUN / CUT&Tag方法(在CUTANA®平台下),使用
显著降低细胞输入和测序深度(与ChIP-seq相比,每个参数节省>10倍)。
CUTANA检测得到EpiCypher专有的加标设计核小体(dNuc)技术的支持,
实现技术监控和量化标准化。TEM-seq项目的关键创新在于
开发一种新型的多组学工作流程,结合EpiCypher的定量CUTANA CUT&RUN
使用NEB的酶促甲基测序(EM-seq)方法进行无偏DNA分析的技术。EM-seq
利用DNAme的酶促转化(5 mC/5 hmC),并提供急需的亚硫酸氢盐替代品
测序(BS;一种降解DNA并具有系统性序列偏差的化学处理),以产生高水平的
高分辨率、无偏的DNAme图谱,样品输入量约为BS的1/10。在第一阶段目标1中,我们将严格
在三种细胞系中验证我们的TEM-seq工作流程,将结果与标准CUT&RUN和EM-seq进行基准测试
分析,并进一步开发EpiCypher的spike-in控制与TEM-seq兼容。我们将推进到
第二阶段,当我们证明TEM-seq生成与组蛋白相关的高度可靠的DNAme图谱时,
使用<50 k细胞和<10 M读数的PTM和ChAP。在第二阶段目标2中,我们将扩大
控制面板,并为广泛的染色质特征面板开发强大的协议(使用经验证的抗体)
和样品处理方法(新鲜、冷冻和固定),包括药物处理时程实验,
实现临床应用。在第二阶段目标3中,我们将开发/验证TEM-seq beta试剂盒,并创建一个
数据分析门户和自动化分析,以加速商业应用并实现高通量
服务提供。TEM-seq将提供一个强大的新工具来扩展我们对复杂染色质的理解
信号,进一步释放表观遗传学靶向药物和诊断的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael-Christopher Keogh其他文献
Michael-Christopher Keogh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael-Christopher Keogh', 18)}}的其他基金
Scalable and quantitative chromatin profiling from formalin-fixed paraffin-embedded samples
对福尔马林固定石蜡包埋样品进行可扩展和定量的染色质分析
- 批准号:
10696343 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
High-resolution genomic mapping of ssDNA and associated proteins for Alzheimer's disease research
用于阿尔茨海默病研究的 ssDNA 和相关蛋白的高分辨率基因组图谱
- 批准号:
10382044 - 财政年份:2022
- 资助金额:
$ 103.57万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10481225 - 财政年份:2022
- 资助金额:
$ 103.57万 - 项目类别:
Quantitative mapping of dynamic epigenetic states in rare and stimulated immune cells
稀有和刺激免疫细胞动态表观遗传状态的定量图谱
- 批准号:
10686135 - 财政年份:2022
- 资助金额:
$ 103.57万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10384022 - 财政年份:2022
- 资助金额:
$ 103.57万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10622310 - 财政年份:2022
- 资助金额:
$ 103.57万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10610898 - 财政年份:2021
- 资助金额:
$ 103.57万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10401943 - 财政年份:2021
- 资助金额:
$ 103.57万 - 项目类别:
A new epigenetic toolbox for inflammation research and drug discovery
用于炎症研究和药物发现的新表观遗传学工具箱
- 批准号:
10257054 - 财政年份:2021
- 资助金额:
$ 103.57万 - 项目类别:
相似海外基金
Establishing patient-derived iPSCs as a platform for discovery research in NAFLD
建立源自患者的 iPSC 作为 NAFLD 发现研究的平台
- 批准号:
10647450 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Laser particles-based spatiotemporal and dynamic single-cell multiomics
基于激光粒子的时空和动态单细胞多组学
- 批准号:
10723601 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
- 批准号:
10613257 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
NCI SBIR Contract Topic 428 Phase II (Solicitation Number: BAA 75N91022R00027): Cloud-based Liquid-biopsy and Radiomics Platform for the Cancer Research Data Commons
NCI SBIR 合同主题 428 第二阶段(征集编号:BAA 75N91022R00027):用于癌症研究数据共享的基于云的液体活检和放射组学平台
- 批准号:
10906504 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Ultrasensitive multiomic platform using epitope-targeted DNA methylation mapping
使用表位靶向 DNA 甲基化作图的超灵敏多组学平台
- 批准号:
10833236 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Towards an integrated analytics solution to creating a spatially-resolved single-cell multi-omics brain atlas
寻求集成分析解决方案来创建空间解析的单细胞多组学大脑图谱
- 批准号:
10724843 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Deep-learning Integration of Histopathology and Proteogenomics at a Pan-cancer Level - Resubmission
泛癌水平上组织病理学和蛋白质基因组学的深度学习整合 - 重新提交
- 批准号:
10606760 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别:
Shared Resource Core 2: Clinical Artificial Intelligence Core
共享资源核心2:临床人工智能核心
- 批准号:
10712296 - 财政年份:2023
- 资助金额:
$ 103.57万 - 项目类别: