Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
基本信息
- 批准号:10382366
- 负责人:
- 金额:$ 79.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAdolescenceAdolescentAgeAnxietyAnxiety DisordersBehaviorBehavior assessmentBehavioral SciencesChildChild DevelopmentClinicalClinical ResearchClinical SciencesComputational LinguisticsComputer Vision SystemsComputersDataData CollectionDepressive disorderDevelopmentDiagnosisDiagnosticDimensionsElementsEmotionalEmotionsEthnic OriginFaceFacial ExpressionFactor AnalysisFrustrationFundingGenderGoalsGrainHourHumanIndividualIndividual DifferencesInterventionInterviewInvestmentsJudgmentLaboratoriesLinguisticsMachine LearningMeasurementMeasuresMedicineMental DepressionMental HealthMethodologyMethodsModelingMood DisordersMoodsMultivariate AnalysisNIH Program AnnouncementsNational Institute of Mental HealthNegative ValenceParentsParticipantPediatric HospitalsPhenotypePhiladelphiaPlayPopulationPredictive AnalyticsProceduresPsychiatric DiagnosisPsychopathologyQuality of lifeRaceReportingResearchResearch Domain CriteriaResearch PersonnelResourcesSamplingSignal TransductionSiteSmilingSocial BehaviorSocial ProcessesSpecialistSystemTestingThinnessTimeTrainingTranslatingTrier Social Stress TestVariantYouthaffective computingagedautism spectrum disorderautistic childrenbasebehavior measurementbehavioral healthbiobehaviorclinical phenotypecollegecostdigitalemotional behavioremotional functioningexperimental studyindexingindividual variationnatural languagenovelprogramsrepetitive behaviorresponseshowing emotionsocialsocial anxietysocial deficitssocial metricssocial stresstool
项目摘要
ABSTRACT
Difficulties with emotion expression and social behavior characterize multiple psychiatric conditions and
negatively impact child development. However, existing measurement tools for indexing social-emotional
function are imprecise and subjective, or require specialized training that is costly and time-intensive, prohibiting
widespread implementation. The imprecision of existing tools has a major negative impact not only on research,
but on the ability to assess and treat individuals with mental health concerns – especially among underserved
and under-resourced populations. Here, we propose to address this problem by quantifying social and emotional
behavior using novel biobehavioral markers derived from computer vision (facial expression analysis) and
computational linguistics (social/sentiment analysis). Our team has successfully used these markers to predict
the presence of autism spectrum disorder (ASD) with 91% accuracy. In this proposal, we determine the extent
to which our markers can serve as continuous measures of social behavior and negative emotion to advance
clinical phenotyping and interventions. The proposal brings together two high-bandwidth clinical research
programs at the Children’s Hospital of Philadelphia and Baylor College of Medicine to collect data on 750
adolescents (ages 12-17 inclusive) with ASD, a primary anxiety or depressive disorder, or without any
developmental/psychiatric condition. At a single assessment, all youth will participate in an extensive clinical
phenotyping battery consisting of validated clinical interviews and child-/parent-report scales assessing
converging and diverging mental health constructs, and three tasks eliciting positive/negative emotion, social
stress, and mild frustration. A subsample of 150 adolescents will be reassessed 6-10 weeks later to allow
retest/stability analyses. A novel camera apparatus will capture naturalistic synchronized verbal and nonverbal
signals from dyads. Our analytic approach combines state-of-the-art machine learning, computational linguistics,
and computer vision – including facial emotion recognition methods that rival several commonly used
alternatives. The ultimate goal of this proposal is to develop valid and objective measures of the Social and
Negative Valence Systems using novel biobehavioral markers in a large transdiagnostic sample of youth.
Secondary goals are to develop easy-to-follow methods to widely disseminate our tools and procedures, and to
characterize individual variability in these key RDoC metrics by age, gender, race/ethnicity, and diagnosis. The
achievement of these goals will provide researchers with sorely needed measures of social and emotional
behavior, and provide clinicians with a new set of tools for identifying and tracking youth in need of mental health
treatment.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN David HERRINGTON其他文献
JOHN David HERRINGTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN David HERRINGTON', 18)}}的其他基金
Ethical Perspectives Towards Using Smart Contracts for Patient Consent and Data Protection of Digital Phenotype Data in Machine Learning Environments
在机器学习环境中使用智能合约获得患者同意和数字表型数据数据保护的伦理视角
- 批准号:
10599498 - 财政年份:2022
- 资助金额:
$ 79.02万 - 项目类别:
Enhancing the Cloud-Readiness of Perceptual Computing Through Data Standardization Software
通过数据标准化软件增强感知计算的云就绪性
- 批准号:
10609245 - 财政年份:2022
- 资助金额:
$ 79.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10680488 - 财政年份:2022
- 资助金额:
$ 79.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10502082 - 财政年份:2022
- 资助金额:
$ 79.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10594051 - 财政年份:2021
- 资助金额:
$ 79.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10183399 - 财政年份:2021
- 资助金额:
$ 79.02万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 79.02万 - 项目类别:
Research Grant