Enhancing the Cloud-Readiness of Perceptual Computing Through Data Standardization Software
通过数据标准化软件增强感知计算的云就绪性
基本信息
- 批准号:10609245
- 负责人:
- 金额:$ 26.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-28 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdoptionAlgorithmsArchitectureArtificial IntelligenceBehavioral SciencesBrain imagingCollaborationsCollectionCommunitiesComputational algorithmComputer Vision SystemsComputer softwareDataData AnalysesData FilesData SetDatabasesDevelopmentDockingEnvironmentFaceGenerationsGoalsHeart RateHumanIndividualIndustryInvestmentsJudgmentLanguageMeasuresMedicineMetadataMonitorMovementOutputParentsParticipantPediatric HospitalsPhiladelphiaPredictive AnalyticsPsychophysiologyPythonsReadinessReport (document)ResearchResearch PersonnelSeriesSiteSocial BehaviorSoftware EngineeringSoftware ToolsSpecific qualifier valueStructureTestingUnited States National Institutes of HealthVisualbiomedical imagingcloud basedcollegecomputational pipelinesdata formatdata repositorydata standardsdata streamsdata structureemotional behaviorexperienceflexibilityimage processingimprovedinnovationmemberopen sourcerepositorysensorsuccesstoolwearable device
项目摘要
ABSTRACT
Behavioral science is in the midst of a paradigm shift away fromhuman judgment and toward rigorous perceptual
computing (PC) and investment in human predictive analytics. As a part of three separate NIH R01s (including
the Parent R01 [MH125958]), our team is developing open-source software tools to exquisitely measure social
and emotional behavior, including tools to quantify facial movements, body actions, and language.
Unfortunately, the field of perceptual computing currently has no agreed-upon standard for organizing,
maintaining, and curating large audio-visual datasets, and the myriad data streams that accompany them (for
example, simultaneous psychophysiology recordings from wearable devices). The absence of such a standard
is a major impediment to innovation in perceptual computing, as it hinders the development of large -scale
computational pipelines and algorithm optimizations that cloud applications require. The purpose of this
Supplement is to directly address this problemthough the creation of acommon data structure ready for adoption
and iteration by the field of PC, along with a set of basic tools for working with data that follow this structure. The
parent R01 for this Supplement is an ideal context in which to develop such a standard, as it involves the
collection of more than 3000 individual audio-visual files across two sites (The Children’s Hospital of Philadelphia
and Baylor College of Medicine). In other words, the parent R01 is a microcosm of the larger challenge facing
the field – how to effectively and seamlessly integrate separate datasets in ways that supports robust and highly
replicable analysis paths. This Supplement to our R01 will address this challenge by developing an open-source
Sensor Data Structure (SDS) – a data generation, storage, and basic processing standard for use by the
perceptual computing community – along with open-source software tools and Container environments to
generate and validate data. We propose to parallel the achievements by highly successful NIH -supported
Biomedical Imaging Data Structure (BIDS), which was developed to address an analogous problem in the field
of brain imaging (e.g., the need to harmonize and curate large multicenter datasets). Although the Parent R01
is staffed for collecting and analyzing data, this Supplement would provide three new deliverables, all
implemented via the addition of software engineer with industry experience: 1) creation of the data structure, 2)
creation of a Python module and Container environment for implementing the standard, and 3) posting and
monitoring these two deliverables publicly on GitHub. This is acritical step toward our ultimate goal of developing
PC tools that are “cloud-ready”, and in widespread use by the PC community.
摘要
行为科学正处于从人类判断转向严格感性的范式转变之中
计算(PC)和投资人类预测分析。作为三个独立NIH R 01的一部分(包括
Parent R 01 [MH 125958]),我们的团队正在开发开源软件工具,
和情绪行为,包括量化面部动作,身体动作和语言的工具。
不幸的是,感知计算领域目前还没有统一的组织标准,
维护和策划大型视听数据集,以及伴随它们的无数数据流(用于
例如,来自可穿戴设备的同时心理生理学记录)。缺乏这样的标准
是感知计算创新的主要障碍,因为它阻碍了大规模
云应用程序所需的计算管道和算法优化。这样做的目的
补充的是直接解决这个问题,通过创建通用的数据结构,以备采用
和PC领域的迭代,沿着一组基本工具,用于处理遵循这种结构的数据。的
本补充文件的父R 01是制定此类标准的理想环境,因为它涉及
收集了两个站点(费城儿童医院)的3000多个单独的视听文件
贝勒医学院(Baylor College of Medicine)换句话说,父R 01是所面临的更大挑战的缩影
该领域-如何有效地和无缝地集成独立的数据集的方式,支持强大的,高度
可复制的分析路径。我们的R 01的补充将通过开发一个开源的
传感器数据结构(SDS)--一种数据生成、存储和基本处理标准,
感知计算社区-沿着开源软件工具和容器环境,
生成和验证数据。我们建议将非常成功的NIH支持的成就与之相媲美。
生物医学成像数据结构(BIDS),这是为了解决该领域的类似问题而开发的
脑成像(例如,协调和管理大型多中心数据集的需求)。虽然R 01
的工作人员负责收集和分析数据,本补编将提供三个新的可交付成果,
通过增加具有行业经验的软件工程师来实施:1)创建数据结构,2)
创建一个Python模块和容器环境来实现标准,以及3)发布和
在GitHub上公开监控这两个可交付成果。这是朝着我们发展的最终目标迈出的关键一步。
PC工具是“云就绪”,并在PC社区广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN David HERRINGTON其他文献
JOHN David HERRINGTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN David HERRINGTON', 18)}}的其他基金
Ethical Perspectives Towards Using Smart Contracts for Patient Consent and Data Protection of Digital Phenotype Data in Machine Learning Environments
在机器学习环境中使用智能合约获得患者同意和数字表型数据数据保护的伦理视角
- 批准号:
10599498 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10680488 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10502082 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10594051 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10183399 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10382366 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.02万 - 项目类别:
Research Grant