Deep learning for decoding genetic regulation and cellular maps in craniofacial development
深度学习解码颅面发育中的遗传调控和细胞图谱
基本信息
- 批准号:10382360
- 负责人:
- 金额:$ 55.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAtlasesAutomobile DrivingBiologicalBiologyCRISPR/Cas technologyCell ProliferationCell physiologyCellsCommunitiesComplexDataData AnalysesData SetDentalDevelopmentDevelopmental BiologyDevelopmental ProcessDiseaseEmbryoEnhancersFaceBaseFundingFunding MechanismsGene ExpressionGene Expression RegulationGene MutationGenesGeneticGenetic DiseasesGenetic TranscriptionGenetic studyGenomicsGenotype-Tissue Expression ProjectHumanHuman GeneticsKnock-inKnock-outKnowledgeLearningMachine LearningMapsMessenger RNAMethodsMicroRNAsMolecularMorphologyMusMutationNational Institute of Dental and Craniofacial ResearchOralPalateParentsPhenotypePlayProcessRegulationResearchResearch PersonnelResearch Project GrantsResolutionRoleSeriesTimeTime Series AnalysisTissuesUntranslated RNAValidationVariantanalytical toolbasecausal variantcell motilitycell typecleft lip and palatecraniofacialcraniofacial developmentcraniofacial tissuedata integrationde novo mutationdeep learningdeep learning algorithmdesignepigenomicsexperiencegene functiongenetic analysisgenetic variantgenome sequencinggenome wide association studygenomic datagenomic toolsheterogenous datalearning strategymachine learning methodnovelorofacial cleftprogramssecondary analysissingle-cell RNA sequencingsuccesstranscription factortranscriptomicswhole genome
项目摘要
Project Summary
A deep understanding of gene regulation and function during craniofacial development is not only important for
our biological knowledge, but also critical to identify causal variants and genes underlying many dental, oral, and
craniofacial (DOC) diseases. Numerous -omics datasets at the genomic, epigenomic, (single-cell) transcriptomic
levels have been generated for craniofacial development and DOC diseases. These datasets are highly
heterogeneous (e.g. platforms, species, tissues, developmental stages) and cross-species (e.g. human and
mouse), requiring novel analytical approaches for decoding genetic regulation, molecular function, and cellular
maps in craniofacial development. Critically, because of practical unavailability of human embryonic craniofacial
tissue, there is a big gap between the abundant -omics and functional studies in murine craniofacial development
and large-scale human genetic studies of DOC diseases. In this proposal, we combine machine learning,
genomics, single-cell RNA sequencing (scRNA-seq), complex disease genetics, developmental biology to
design novel methods aiming to decode complex genetic regulation and cellular maps during craniofacial
development. We propose three specific aims. Aim 1. To develop a deep learning method, DeepFace, for
characterizing and prioritizing genetic variants and regulation during craniofacial development. DeepFace is
designed to decipher functional impact of noncoding variants and will be the first deep learning method to
integrate cross-species functional features in craniofacial development. We will validate DeepFace by using data
from genome-wide association studies (15 datasets) and case-parent trio-based whole genome sequencing (3
datasets) of orofacial clefts (OFCs). This validation will identify potential causal variants, both common and de
novo mutations, in OFCs. Aim 2. To develop deep learning methods for time-series scRNA-seq data analysis in
craniofacial development. We will develop novel algorithms including TTNNet for integrating time-series scRNA-
seq data and DrivAER for tracing developmental trajectories and identifying driving transcription factors in
craniofacial development. We will validate the methods using scRNA-seq datasets from the FaceBase
consortium and to-be-generated data for mouse palate formation. Aim 3. To experimentally validate and
characterize the top ranked novel mutations (Aim 1) and regulators (Aim 2). Building on our previous studies,
strong preliminary data and highly experienced team, this proposal is timely to develop machine learning
methods to effectively address the current gap between the genomics studies in murine craniofacial development
and human genetic studies of orofacial clefts. The successful completion will provide 1) the NIDCR research
community a suite of novel methods and analytical tools for genomic/epigenomic/scRNA-seq data, and 2) the
mechanistic assessment on the mutations/genes and transcriptional regulators that are potentially involved in
OFCs and related craniofacial diseases.
项目摘要
深入了解颅面发育过程中的基因调控和功能不仅对
我们的生物学知识,但也至关重要,以确定因果变异和基因的基础上,许多牙科,口腔,
颅面(DOC)疾病。基因组学、表观基因组学、(单细胞)转录组学的大量组学数据集
已经产生了颅面发育和DOC疾病的水平。这些数据集高度
异质性(例如平台、物种、组织、发育阶段)和跨物种(例如人类和
小鼠),需要新的分析方法来解码遗传调控,分子功能和细胞
颅面发育的地图关键的是,由于人类胚胎颅面的实际可用性
组织,在小鼠颅面发育的丰富组学和功能研究之间存在很大差距
以及DOC疾病的大规模人类遗传学研究。在这个提议中,我们将联合收割机机器学习,
基因组学,单细胞RNA测序(scRNA-seq),复杂疾病遗传学,发育生物学,
设计新的方法,旨在解码复杂的遗传调控和细胞图,在颅面
发展我们提出三个具体目标。目标1.开发一种深度学习方法DeepFace,
表征和优先考虑颅面发育过程中的遗传变异和调节。DeepFace是
旨在破译非编码变体的功能影响,并将成为第一个深度学习方法,
在颅面发育中整合跨物种功能特征。我们将通过使用数据来验证DeepFace
来自全基因组关联研究(15个数据集)和基于病例亲本trio的全基因组测序(3个
口面裂(orofacial clefts,OFC)。这种验证将识别潜在的因果变异,包括常见的和不常见的。
OFC中的新生突变。目标二。开发用于时间序列scRNA-seq数据分析的深度学习方法,
颅面发育我们将开发新的算法,包括TTNNet,用于整合时间序列scRNA-
seq数据和DrivAER用于追踪发育轨迹和识别驱动转录因子,
颅面发育我们将使用FaceBase中的scRNA-seq数据集来验证这些方法。
联合体和将要生成的小鼠腭形成的数据。目标3。通过实验验证和
表征排名靠前的新突变(目标1)和调节因子(目标2)。基于我们之前的研究,
强大的初步数据和经验丰富的团队,这一建议是及时发展机器学习
有效解决目前小鼠颅面发育基因组学研究之间差距的方法
以及人类对口面裂的遗传学研究。成功完成将提供1)NIDCR研究
社区的一套新的方法和分析工具的基因组/表观基因组/scRNA-seq数据,和2)
对潜在参与的突变/基因和转录调节因子的机制评估
OFC和相关颅面疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junichi Iwata其他文献
Junichi Iwata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junichi Iwata', 18)}}的其他基金
Deep learning for decoding genetic regulation and cellular maps in craniofacial development
深度学习解码颅面发育中的遗传调控和细胞图谱
- 批准号:
10600857 - 财政年份:2021
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10032934 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10398249 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10192706 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10614434 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Molecular Regulatory Mechanism of Calvaria Bone Development and Homeostasis
颅盖骨发育与稳态的分子调控机制
- 批准号:
9883783 - 财政年份:2017
- 资助金额:
$ 55.19万 - 项目类别:
Molecular Regulatory Mechanism of Calvaria Bone Development and Homeostasis
颅盖骨发育与稳态的分子调控机制
- 批准号:
10133045 - 财政年份:2017
- 资助金额:
$ 55.19万 - 项目类别:
Transcripts and Functions Targeted by Non-coding RNAs in Palate Development
上颚发育中非编码 RNA 靶向的转录本和功能
- 批准号:
9165356 - 财政年份:2016
- 资助金额:
$ 55.19万 - 项目类别:
Transcripts and Functions Targeted by Non-coding RNAs in Palate Development
上颚发育中非编码 RNA 靶向的转录本和功能
- 批准号:
9333364 - 财政年份:2016
- 资助金额:
$ 55.19万 - 项目类别:
Role of WNT Signaling in Craniofacial Muscle Development
WNT 信号传导在颅面肌发育中的作用
- 批准号:
9088414 - 财政年份:2015
- 资助金额:
$ 55.19万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 55.19万 - 项目类别:
Research Grant