Deep learning for decoding genetic regulation and cellular maps in craniofacial development
深度学习解码颅面发育中的遗传调控和细胞图谱
基本信息
- 批准号:10382360
- 负责人:
- 金额:$ 55.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAtlasesAutomobile DrivingBiologicalBiologyCRISPR/Cas technologyCell ProliferationCell physiologyCellsCommunitiesComplexDataData AnalysesData SetDentalDevelopmentDevelopmental BiologyDevelopmental ProcessDiseaseEmbryoEnhancersFaceBaseFundingFunding MechanismsGene ExpressionGene Expression RegulationGene MutationGenesGeneticGenetic DiseasesGenetic TranscriptionGenetic studyGenomicsGenotype-Tissue Expression ProjectHumanHuman GeneticsKnock-inKnock-outKnowledgeLearningMachine LearningMapsMessenger RNAMethodsMicroRNAsMolecularMorphologyMusMutationNational Institute of Dental and Craniofacial ResearchOralPalateParentsPhenotypePlayProcessRegulationResearchResearch PersonnelResearch Project GrantsResolutionRoleSeriesTimeTime Series AnalysisTissuesUntranslated RNAValidationVariantanalytical toolbasecausal variantcell motilitycell typecleft lip and palatecraniofacialcraniofacial developmentcraniofacial tissuedata integrationde novo mutationdeep learningdeep learning algorithmdesignepigenomicsexperiencegene functiongenetic analysisgenetic variantgenome sequencinggenome wide association studygenomic datagenomic toolsheterogenous datalearning strategymachine learning methodnovelorofacial cleftprogramssecondary analysissingle-cell RNA sequencingsuccesstranscription factortranscriptomicswhole genome
项目摘要
Project Summary
A deep understanding of gene regulation and function during craniofacial development is not only important for
our biological knowledge, but also critical to identify causal variants and genes underlying many dental, oral, and
craniofacial (DOC) diseases. Numerous -omics datasets at the genomic, epigenomic, (single-cell) transcriptomic
levels have been generated for craniofacial development and DOC diseases. These datasets are highly
heterogeneous (e.g. platforms, species, tissues, developmental stages) and cross-species (e.g. human and
mouse), requiring novel analytical approaches for decoding genetic regulation, molecular function, and cellular
maps in craniofacial development. Critically, because of practical unavailability of human embryonic craniofacial
tissue, there is a big gap between the abundant -omics and functional studies in murine craniofacial development
and large-scale human genetic studies of DOC diseases. In this proposal, we combine machine learning,
genomics, single-cell RNA sequencing (scRNA-seq), complex disease genetics, developmental biology to
design novel methods aiming to decode complex genetic regulation and cellular maps during craniofacial
development. We propose three specific aims. Aim 1. To develop a deep learning method, DeepFace, for
characterizing and prioritizing genetic variants and regulation during craniofacial development. DeepFace is
designed to decipher functional impact of noncoding variants and will be the first deep learning method to
integrate cross-species functional features in craniofacial development. We will validate DeepFace by using data
from genome-wide association studies (15 datasets) and case-parent trio-based whole genome sequencing (3
datasets) of orofacial clefts (OFCs). This validation will identify potential causal variants, both common and de
novo mutations, in OFCs. Aim 2. To develop deep learning methods for time-series scRNA-seq data analysis in
craniofacial development. We will develop novel algorithms including TTNNet for integrating time-series scRNA-
seq data and DrivAER for tracing developmental trajectories and identifying driving transcription factors in
craniofacial development. We will validate the methods using scRNA-seq datasets from the FaceBase
consortium and to-be-generated data for mouse palate formation. Aim 3. To experimentally validate and
characterize the top ranked novel mutations (Aim 1) and regulators (Aim 2). Building on our previous studies,
strong preliminary data and highly experienced team, this proposal is timely to develop machine learning
methods to effectively address the current gap between the genomics studies in murine craniofacial development
and human genetic studies of orofacial clefts. The successful completion will provide 1) the NIDCR research
community a suite of novel methods and analytical tools for genomic/epigenomic/scRNA-seq data, and 2) the
mechanistic assessment on the mutations/genes and transcriptional regulators that are potentially involved in
OFCs and related craniofacial diseases.
项目摘要
对颅面发育过程中基因调节和功能的深入了解不仅很重要
我们的生物学知识,但对于确定许多牙齿,口服和
颅面(DOC)疾病。基因组,表观基因组,(单细胞)转录组的许多 - 词素数据集
已经为颅面发育和DOC疾病产生了水平。这些数据集高度
异质(例如平台,物种,组织,发育阶段)和跨物种(例如人类和人类
小鼠),需要新颖的分析方法来解码遗传调节,分子功能和细胞
颅面发育中的地图。至关重要的是,由于人类胚胎颅面的实际不可用
组织,在鼠颅颅发育中丰富的 - 组学和功能研究之间存在很大的差距
和大规模的DOC疾病遗传研究。在此建议中,我们将机器学习结合在一起,
基因组学,单细胞RNA测序(SCRNA-SEQ),复杂的疾病遗传学,发育生物学到
设计新颖的方法,旨在解码颅面期间复杂的遗传调节和细胞图
发展。我们提出了三个具体目标。目的1。开发一种深度学习方法,深面
在颅面发育过程中表征和优先考虑遗传变异和调节。深面是
旨在破译非编码变体的功能影响,并将成为第一个深入学习方法
在颅面发育中整合跨物种的功能特征。我们将使用数据验证深面
来自全基因组关联研究(15个数据集)和基于病例的三重奏整个基因组测序(3个
(OFCS)的数据集)。该验证将确定常见和DE的潜在因果变异
Novo突变,在OFC中。目标2。为时间序列开发深度学习方法SCRNA-SEQ数据分析
颅面发展。我们将开发新的算法,包括用于整合时间序列scrna-的TTNNET-
SEQ数据和用于追踪发展轨迹并识别驱动转录因子的Drivaer
颅面发展。我们将使用facebase的scrna-seq数据集验证这些方法
用于小鼠pa形成的财团和生成的数据。目标3。实验验证和
表征排名最高的新型突变(AIM 1)和调节剂(AIM 2)。在我们以前的研究的基础上,
强大的初步数据和经验丰富的团队,该建议是及时开发机器学习的
有效解决鼠颅颅发育中基因组学研究之间当前差距的方法
和人类裂纹的人类遗传研究。成功完成将提供1)NIDCR研究
社区一套针对基因组/表观基因组/scrna-seq数据的新型方法和分析工具,以及2)
对突变/基因和转录调节因子的机械评估,这些调节剂可能参与
OFC和相关的颅面疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junichi Iwata其他文献
Junichi Iwata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junichi Iwata', 18)}}的其他基金
Deep learning for decoding genetic regulation and cellular maps in craniofacial development
深度学习解码颅面发育中的遗传调控和细胞图谱
- 批准号:
10600857 - 财政年份:2021
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10398249 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10032934 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10192706 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Role of cellular metabolism in palate morphogenesis
细胞代谢在上颚形态发生中的作用
- 批准号:
10614434 - 财政年份:2020
- 资助金额:
$ 55.19万 - 项目类别:
Molecular Regulatory Mechanism of Calvaria Bone Development and Homeostasis
颅盖骨发育与稳态的分子调控机制
- 批准号:
9883783 - 财政年份:2017
- 资助金额:
$ 55.19万 - 项目类别:
Molecular Regulatory Mechanism of Calvaria Bone Development and Homeostasis
颅盖骨发育与稳态的分子调控机制
- 批准号:
10133045 - 财政年份:2017
- 资助金额:
$ 55.19万 - 项目类别:
Transcripts and Functions Targeted by Non-coding RNAs in Palate Development
上颚发育中非编码 RNA 靶向的转录本和功能
- 批准号:
9165356 - 财政年份:2016
- 资助金额:
$ 55.19万 - 项目类别:
Transcripts and Functions Targeted by Non-coding RNAs in Palate Development
上颚发育中非编码 RNA 靶向的转录本和功能
- 批准号:
9333364 - 财政年份:2016
- 资助金额:
$ 55.19万 - 项目类别:
Role of WNT Signaling in Craniofacial Muscle Development
WNT 信号传导在颅面肌发育中的作用
- 批准号:
9088414 - 财政年份:2015
- 资助金额:
$ 55.19万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 55.19万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 55.19万 - 项目类别:
Edited Magnetic Resonance Spectroscopy of the Pediatric Brain
儿科大脑磁共振波谱编辑
- 批准号:
10583752 - 财政年份:2023
- 资助金额:
$ 55.19万 - 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
- 批准号:
10766467 - 财政年份:2023
- 资助金额:
$ 55.19万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 55.19万 - 项目类别: