Deep Learning and Subtyping of Post-COVID-19 Lung Progression Phenotypes
COVID-19 后肺部进展表型的深度学习和亚型分析
基本信息
- 批准号:10634998
- 负责人:
- 金额:$ 75.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AirAlveolusBiological MarkersCOVID-19COVID-19 patientCOVID-19 survivorsCharacteristicsChronic Obstructive Pulmonary DiseaseClassificationClinicClinicalClinical DataClinical assessmentsDataData AnalysesDedicationsDevelopmentDimensionsDiseaseExhibitsExposure toGoalsHealthHealthcareImageIowaKnowledgeLearningLiquid substanceLong-Term EffectsLungModelingOutcomePatient CarePatientsPhenotypePublic HealthPulmonary EmphysemaRadiation Dose UnitRecommendationResearchResolutionSARS-CoV-2 infectionSiteStructure of parenchyma of lungStudy SubjectTechniquesTestingThoracic RadiographyTimeTrainingUniversitiesValidationVirus DiseasesVisitX-Ray Computed TomographyX-Ray Medical Imagingclinical biomarkerscohortcostdeep learningdeep learning algorithmdeep learning modelexperiencefibrotic lungfollow-uphuman subjectimaging biomarkerimprovedin silicoin vivolearning algorithmlearning strategylong-term sequelaelung imagingnovel coronavirusparticlephenotypic biomarkerpost-COVID-19prototypepulmonary functionsmall airways diseasesupervised learningtransfer learning
项目摘要
PROJECT SUMMARY
Patients who recover from the novel coronavirus disease 2019 (COVID-19) may experience a range of long-
term health consequences. Since the lung is the primary site of viral infection, pulmonary sequelae may present
persistently in COVID-19 survivors. Thus, clinical assessment of COVID-19 survivors in conjunction with chest
X-ray (CXR) and computed tomography (CT) is recommended. CXR is more accessible, whereas CT provides
more detailed information. Our long-term goal is to develop an integrated deep learning model that can assess
lung images to assist with the management and treatment of long-term sequelae of post-COVID-19 subjects.
The primary objective of the proposed research is to advance contrastive self-supervised learning models that
take advantage of the accessibility of CXR scanners and the accuracy of CT images, identify the subtypes in
patients with post-COVID-19, and characterize clinical, imaging and mechanistic biomarkers within subtypes.
Our central hypothesis is that post-COVID-19 subtypes exist and they are characterized by distinct progression
phenotypes. To test this hypothesis and achieve the primary objective, we will perform the following four specific
aims. In Aim 1, we will advance contrastive learning methods to handle large-scale images with low training
costs, and fine-tune the classifier and the encoder network on large-scale CXR images to detect post-COVID-
19 subjects. In Aim 2, we will advance contrastive learning methods that learn from CT images acquired at
different volumes and different times to differentiate post-COVID-19 subjects from other cohorts and identify
subtypes. In Aim 3, we will apply computational fluid and particle dynamics techniques to derive mechanistic
biomarkers to explain the associations between clinical and imaging biomarkers in post-COVID-19 subtypes. In
Aim 4, we will conduct a human subject study that examines post-COVID-19 subjects at 36-48 months after
initial follow-up visits to assess the progression features of their clinical and imaging biomarkers. In summary,
we will advance contrastive self-supervised learning algorithms based on CXR and CT images, respectively, for
accessibility (Aim 1) and accuracy (Aim 2). We will generate in silico data for feature interpretability (Aim 3) and
gather in vivo data for model training and validation (Aim 4). The pre-trained model from Aim 2 will be fine-tuned
via transfer learning to input CXR images that are classified as post-COVID-19 by the model from Aim 1. An
integrated deep learning model based on the two models from Aim 1 and 2 will take CXR images as inputs to
provide CT-based detailed phenotypic information together with mechanistically and clinically meaningful
interpretation. If successful, our study will not only advance contrastive learning algorithms, but also elucidate
the pulmonary sequelae of post-COVID-19 patients in subtypes and associated clinical, imaging and mechanistic
biomarkers. The ability to identify progression subtypes and associated phenotypic biomarkers will have a
positive impact on the management and treatment of patients with post-COVID-19.
项目摘要
从2019年新型冠状病毒病(COVID-19)中康复的患者可能会经历一系列长期-
长期健康后果。由于肺部是病毒感染的主要部位,可能会出现肺部后遗症
在COVID-19幸存者中持续存在。因此,COVID-19幸存者的临床评估与胸部
建议进行X线(CXR)和计算机断层扫描(CT)。CXR更容易获得,而CT提供
更多详细信息。我们的长期目标是开发一个集成的深度学习模型,
肺部图像,以协助管理和治疗COVID-19后受试者的长期后遗症。
该研究的主要目标是推进对比自监督学习模型,
利用CXR扫描仪的可及性和CT图像的准确性,
COVID-19后患者,并表征亚型内的临床、成像和机制生物标志物。
我们的中心假设是,存在COVID-19后亚型,并且它们具有不同的进展特征
表型为了验证这一假设并实现主要目标,我们将执行以下四个具体的
目标。在目标1中,我们将推进对比学习方法,以处理低训练的大规模图像
成本,并对大规模CXR图像的分类器和编码器网络进行微调,以检测COVID后
19名受试者。在目标2中,我们将推进对比学习方法,从在以下条件下获取的CT图像中学习:
不同的体积和不同的时间,以区分COVID-19后受试者与其他队列,
亚型。在目标3中,我们将应用计算流体和粒子动力学技术来推导机械
生物标志物,以解释COVID-19后亚型的临床和成像生物标志物之间的关联。在
目标4,我们将进行一项人类受试者研究,检查COVID-19后36-48个月的受试者,
初始随访访视,以评估其临床和影像学生物标志物的进展特征。总的来说,
我们将分别基于CXR和CT图像推进对比自监督学习算法,
可及性(目标1)和准确性(目标2)。我们将生成用于特征可解释性的计算机数据(目标3),
收集用于模型训练和验证的体内数据(目标4)。来自Aim 2的预训练模型将被微调
通过迁移学习输入CXR图像,这些图像被目标1中的模型分类为后COVID-19。一个
基于Aim 1和Aim 2两个模型的集成深度学习模型将以CXR图像作为输入,
提供基于CT的详细表型信息,以及机械和临床意义
解释。如果成功的话,我们的研究将不仅推进对比学习算法,
COVID-19后患者的肺部后遗症亚型以及相关的临床、影像学和机制
生物标志物。鉴定进展亚型和相关表型生物标志物的能力将具有潜在的潜在价值。
对COVID-19后患者的管理和治疗产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHING-LONG LIN其他文献
CHING-LONG LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHING-LONG LIN', 18)}}的其他基金
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8850481 - 财政年份:2013
- 资助金额:
$ 75.67万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
9283608 - 财政年份:2013
- 资助金额:
$ 75.67万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8714034 - 财政年份:2013
- 资助金额:
$ 75.67万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8554276 - 财政年份:2013
- 资助金额:
$ 75.67万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
9066766 - 财政年份:2013
- 资助金额:
$ 75.67万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8242729 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
7758994 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8451894 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8043553 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Large-Scale Computing and Visualization for Cardiopulmonary Imaging
心肺成像的大规模计算和可视化
- 批准号:
7388316 - 财政年份:2008
- 资助金额:
$ 75.67万 - 项目类别:
相似海外基金
Reverse Engineering the Alveolus: From cellular to microenvironment specification during development
对肺泡进行逆向工程:从开发过程中的细胞规范到微环境规范
- 批准号:
10534378 - 财政年份:2022
- 资助金额:
$ 75.67万 - 项目类别:
Alveolus as Incubator: Functional Genomic Dissection of the Host Response to SARS-CoV-2 Infection.
肺泡作为孵化器:宿主对 SARS-CoV-2 感染反应的功能基因组解剖。
- 批准号:
10245986 - 财政年份:2021
- 资助金额:
$ 75.67万 - 项目类别:
Reverse Engineering the Alveolus: From cellular to microenvironment specification during development
对肺泡进行逆向工程:从开发过程中的细胞规范到微环境规范
- 批准号:
10215602 - 财政年份:2019
- 资助金额:
$ 75.67万 - 项目类别:
The influence that the influence of the different exercise length, the neuromuscular electrical stimulation (NMES) in skeletal muscle, Vitamin C intake and exercise on alveolus and cytokine
不同运动时长、骨骼肌神经肌肉电刺激(NMES)、维生素C摄入和运动对肺泡和细胞因子的影响
- 批准号:
18K10751 - 财政年份:2018
- 资助金额:
$ 75.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wnt-mediated epithelial-endothelial crosstalk in the generation and regeneration of the lung alveolus
Wnt介导的上皮-内皮串扰在肺泡生成和再生中的作用
- 批准号:
10326831 - 财政年份:2018
- 资助金额:
$ 75.67万 - 项目类别:
A bovine alveolus model to replace cattle in the study of host-pathogen interactions in bovine tuberculosis
牛肺泡模型替代牛用于牛结核病宿主与病原体相互作用的研究
- 批准号:
NC/M002047/1 - 财政年份:2016
- 资助金额:
$ 75.67万 - 项目类别:
Research Grant
Reverse Engineering the Alveolus: From cellular to microenvironment specification during development
对肺泡进行逆向工程:从开发过程中的细胞规范到微环境规范
- 批准号:
9223730 - 财政年份:2016
- 资助金额:
$ 75.67万 - 项目类别:
Bone augmentation of jaw and alveolus bone with coral block in preprosthetic surgery.
在假体前手术中用珊瑚块增强颌骨和牙槽骨。
- 批准号:
23592909 - 财政年份:2011
- 资助金额:
$ 75.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EXPRESSION AND FUNCTION OF CEACAM6 IN THE ALVEOLUS
CEACAM6 在肺泡中的表达和功能
- 批准号:
8054534 - 财政年份:2011
- 资助金额:
$ 75.67万 - 项目类别:
The novel therapeutic approach for emphysema by regeneration of microvessel and alveolus after intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor(bFGF-GMS).
肺动脉内给予缓慢释放碱性成纤维细胞生长因子(bFGF-GMS)的明胶微球后,通过再生微血管和肺泡来治疗肺气肿的新方法。
- 批准号:
21390393 - 财政年份:2009
- 资助金额:
$ 75.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)