An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
基本信息
- 批准号:9283608
- 负责人:
- 金额:$ 63.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAirAirway ResistanceAlgorithmsAnimalsAsthmaBackBacteriaBreathingCaliberChronic Obstructive Airway DiseaseClassificationCluster AnalysisDataData AnalysesData SetDatabasesDepositionDiseaseEnvironmental air flowExhibitsFundingGenderGoalsHot SpotImageIndividualInflammationIowaIrritantsLabelLengthLettersLeukocytesLiquid substanceLobeLocationLongitudinal StudiesLungLung diseasesMeasurementModelingMorphologyMulticenter TrialsOutcome MeasureParticulatePatientsPerformancePhenotypePhotonsPopulationPopulation AnalysisPopulation StudyPulmonary EmphysemaPulmonary function testsRadiology SpecialtyResearchResistanceRespiratory physiologyRotationSmoking HistoryStatistical Data InterpretationStatistical MethodsStressStructure-Activity RelationshipStudy SubjectTechniquesTestingThickTissuesToxinTreesUnited States National Institutes of HealthUniversity HospitalsX-Ray Computed Tomographyairway inflammationasthmaticasthmatic airwaybasecomputer clustercomputer frameworkdata modelingdensityexperimental studygenetic epidemiologyhigh dimensionalityhuman datahuman subjectimage guidedimage registrationimprovedlung imaginglung volumeparallel computerparticlephenotypic biomarkerpredictive modelingprogramspublic health relevancesimulationsingle photon emission computed tomographystatisticstoolvalidation studies
项目摘要
DESCRIPTION (provided by applicant): The ultimate goal of the research is to build a new computational framework for assessment and prediction of lung function through integration of statistical analysis of population data with prediction of function in individual subjects via a muti-scale computational fluid dynamics (CFD) lung model, for improved patient phenotyping and hence patient-specific therapy. An hypothesis motivating this research is that lung phenotypes may exhibit similar features by gender, age, and (normal or diseased) state, thus they can be clustered into sub- populations, and the structural and functional features in sub-populations may correlate with deposition of inhaled particulates and inflammation in the lungs. To achieve the goal and test the hypothesis, we propose the following specific aims. (1) Perform statistical analysis of airway image-based measurements and associated covariates. (2) Perform image registration analysis to study regional ventilation, tissue fraction and lung deformation. (3) Develop multi-scale subject-specific airway tree modeling and meshing algorithms for diseased lungs. (4) Apply a parallel CFD model to study airway resistance, particle deposition, and hot spots. Hot spots are the locations where inhaled particles, toxins, irritants, or bacteria accumulate in the lungs. (5) Seek supportive data from human studies to demonstrate that CFD modeling predicts lung regions susceptible to inflammation associated with enhanced deposition of inhaled particulate. We propose to analyze the existing and growing huge databases, such as lung computed tomography (CT) image data, demographic information, smoking history, and pulmonary function tests, collected by the NIH funded multi-center trials. Statistical methods will
be applied to cluster and classify large data sets into sub-populations. The novelty of our approach lies in fusion of both static structural and dynamic functional phenotypes into our statistical analyses, including morphologic and topological airway measurements and threshold-based measurements of air trapping and emphysema extracted from a single CT lung image, deformation-based functional variables derived from image registration of CT images at two lung volumes, and CFD-predicted sensitive functional variables. These statistical tools will identify statistically significant phenotypes contrasting normal, COPD and asthmatic subjects, and identify a few subjects representative of sub-populations for multi-scale high- performance parallel CFD simulations to study flows, resistance, and hot spots, and their correlations with the
inflammations of airways and tissues. Human subject studies will be conducted using volumetric 3D lung dual energy computed tomography (DECT) and 99mTc-MPAO-labelled white blood cell (WBC) lung SPECT imaging for model validation and longitudinal studies.
描述(由申请人提供):本研究的最终目标是通过多尺度计算流体动力学(CFD)肺模型将人群数据的统计分析与个体受试者的功能预测相结合,建立一个新的肺功能评估和预测计算框架,以改善患者表型,从而改善患者特异性治疗。激发该研究的假设是,肺表型可以根据性别、年龄和(正常或患病)状态表现出相似的特征,因此它们可以聚类成亚群,并且亚群中的结构和功能特征可以与吸入颗粒的沉积和肺部炎症相关。为了实现这一目标并检验这一假设,我们提出了以下具体目标。(1)对基于气道图像的测量值和相关协变量进行统计分析。(2)进行图像配准分析,以研究局部通气、组织分数和肺变形。(3)为患病肺部开发多尺度受试者特定气道树建模和网格化算法。(4)应用并行CFD模型研究气道阻力、颗粒沉积和热点。热点是吸入颗粒、毒素、刺激物或细菌在肺部积聚的位置。(5)从人体研究中寻求支持性数据,以证明CFD建模预测肺部区域易受与吸入颗粒物沉积增强相关的炎症影响。我们建议分析现有的和不断增长的巨大数据库,如肺计算机断层扫描(CT)图像数据,人口统计学信息,吸烟史和肺功能测试,收集由NIH资助的多中心试验。统计方法将
将大型数据集聚类和分类为子群体。我们的方法的新奇在于将静态结构和动态功能表型融合到我们的统计分析中,包括形态和拓扑气道测量以及从单个CT肺图像中提取的空气捕获和肺气肿的基于阈值的测量,来自两个肺体积的CT图像的图像配准的基于变形的功能变量,以及CFD预测的敏感功能变量。这些统计工具将识别对比正常、COPD和哮喘受试者的统计学显著表型,并识别代表多尺度高性能并行CFD模拟的亚群的少数受试者,以研究流动、阻力和热点,以及它们与
气道和组织的炎症。人体受试者研究将使用体积3D肺双能计算机断层扫描(DECT)和99 mTc-MPAO标记的白色血细胞(WBC)肺SPECT成像进行模型验证和纵向研究。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.
通过 Douglas-Rachford 算法使用单个掩模进行傅里叶相位检索。
- DOI:10.1016/j.acha.2016.07.003
- 发表时间:2018-05
- 期刊:
- 影响因子:2.5
- 作者:Chen P;Fannjiang A
- 通讯作者:Fannjiang A
Bayesian sparse reduced rank multivariate regression.
- DOI:10.1016/j.jmva.2017.02.007
- 发表时间:2017-05
- 期刊:
- 影响因子:1.6
- 作者:Goh G;Dey DK;Chen K
- 通讯作者:Chen K
Sequential Co-Sparse Factor Regression.
- DOI:10.1080/10618600.2017.1340891
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Mishra A;Dey DK;Chen K
- 通讯作者:Chen K
A note on rank reduction in sparse multivariate regression.
- DOI:10.1080/15598608.2015.1081573
- 发表时间:2016
- 期刊:
- 影响因子:0.6
- 作者:Chen K;Chan KS
- 通讯作者:Chan KS
Reduced rank regression via adaptive nuclear norm penalization.
- DOI:10.1093/biomet/ast036
- 发表时间:2013-12-04
- 期刊:
- 影响因子:2.7
- 作者:Chen K;Dong H;Chan KS
- 通讯作者:Chan KS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHING-LONG LIN其他文献
CHING-LONG LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHING-LONG LIN', 18)}}的其他基金
Deep Learning and Subtyping of Post-COVID-19 Lung Progression Phenotypes
COVID-19 后肺部进展表型的深度学习和亚型分析
- 批准号:
10634998 - 财政年份:2023
- 资助金额:
$ 63.14万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8850481 - 财政年份:2013
- 资助金额:
$ 63.14万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8714034 - 财政年份:2013
- 资助金额:
$ 63.14万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
8554276 - 财政年份:2013
- 资助金额:
$ 63.14万 - 项目类别:
An integrative statistics-guided image-based multi-scale lung model
综合统计引导的基于图像的多尺度肺模型
- 批准号:
9066766 - 财政年份:2013
- 资助金额:
$ 63.14万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8242729 - 财政年份:2010
- 资助金额:
$ 63.14万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
7758994 - 财政年份:2010
- 资助金额:
$ 63.14万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8451894 - 财政年份:2010
- 资助金额:
$ 63.14万 - 项目类别:
Multiscale Interaction of Pulmonary Gas Flow and Lung Tissue Mechanics
肺气流与肺组织力学的多尺度相互作用
- 批准号:
8043553 - 财政年份:2010
- 资助金额:
$ 63.14万 - 项目类别:
Large-Scale Computing and Visualization for Cardiopulmonary Imaging
心肺成像的大规模计算和可视化
- 批准号:
7388316 - 财政年份:2008
- 资助金额:
$ 63.14万 - 项目类别:
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
- 批准号:
10108154 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
EU-Funded
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Standard Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Standard Grant
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
- 批准号:
24K16365 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Continuing Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
- 批准号:
2348151 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Standard Grant
Smoldering coarse woody debris and air quality
阴燃粗木质碎片和空气质量
- 批准号:
IM240100016 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Mid-Career Industry Fellowships
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Fellowship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 63.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists