Decoding global RNP topologies in splicing regulation
解码拼接调节中的全局 RNP 拓扑
基本信息
- 批准号:10636541
- 负责人:
- 金额:$ 56.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcylationAlternative SplicingAmino AcidsAntisense OligonucleotidesBase PairingBenchmarkingBindingBinding ProteinsBiochemicalCell Differentiation processCell LineCell LineageCellsChemicalsChemistryChromatinChromatin Interaction Analysis by Paired-End Tag SequencingClassificationClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDataDevelopmentDiseaseElementsEventExonsFormaldehydeFree EnergyFutureGenesGeneticGenetic DiseasesGenomeHepG2HumanHydroxyl RadicalK-562LawsLigationMalignant NeoplasmsMapsMass Spectrum AnalysisMeasuresMediatingMethodsModelingMolecularMolecular BiologyMolecular ConformationMuscular DystrophiesMutationNerve DegenerationNeurodegenerative DisordersNeuronal DifferentiationPhylogenetic AnalysisPlayProcessProtein IsoformsProteinsProteomePublishingRNARNA BindingRNA FoldingRNA ProcessingRNA SplicingRNA-Binding ProteinsRNA-Protein InteractionRNA-targeting therapyRegulationResourcesRoleSiteSpinal Muscular AtrophyStructureSystemTechnologyTestingThermodynamicsVariantbrain cellcell typecomputational pipelinescomputerized toolscrosslinkempowermentexperimental studygenome editinghigh dimensionalityhigh throughput technologyhuman diseasein vivoinduced pluripotent stem cellinventionmRNA Precursormessenger ribonucleoproteinmultiple omicsnervous system disorderneurodevelopmentnew technologyprecision medicinepredictive modelingprogramsprotein complexprotein functionprotein protein interactionstemtargeted treatmenttherapeutic targetthree dimensional structurethree-dimensional modelingtooltranscriptome
项目摘要
Alternative splicing (AS) is a major mechanism that generates the vast transcriptome and proteome diversity
from the limited genome. Spatial and temporal regulation of AS contributes to cell differentiation and lineage
determination. Mutations that disrupt splicing cause a wide range of diseases including neurodegeneration,
muscular dystrophies, and cancer. Therefore, understanding and targeting splicing is essential to the future of
precision medicine. In the past 3 decades, AS studies have focused on cis elements and their associated trans
factors, such as RNA binding proteins (RBPs). The laws of thermodynamics dictate that RNAs fold into low free
energy structures in the context of RNA-protein complexes (RNPs), however, very little is known about how
pre-mRNA structures in large RNPs control splicing, and various RNA processing events in general. Our lab
invented several chemical crosslink-ligation based methods that enabled direct analysis of transcriptome-wide
protein-independent RNA 2D and 3D structures in vivo (PARIS and SHARC). In this proposal, in Aim 1, we
develop and benchmark a high throughput technology, SHARCLIP, to directly capture all RNA structures,
RNA-RNA, RNA-protein, and protein-protein interactions together. SHARCLIP is conceptually similar to
methods that analyze protein-mediated chromatin conformations, e.g., ChIA-PET and hiChIP, and will bring
1D RNP interaction studies to higher dimensions. In aim 2, applying PARIS and SHARC to chromatin
associated RNAs, and the new method SHARCLIP to key splicing regulators, we will build transcriptome-wide
RNA-structure and RNA-protein interaction models and deconvolve their dynamics in 2 ENCODE cell lines
HepG2 and K562, as well as 6 brain cell lineages from a human iPS differentiation system. In aim 3, further
integrating cell type specific AS programs and disease variants implicated in splicing, we will test whether
mutations act by altering the structures. With the structure models as a guide, we will use a combination of
CRISPR genome editing and structure-perturbing antisense oligos to test the roles of specific structures in
regulating splicing in neuronal differentiation. Together, this proposal will produce a new technology that
simultaneously capture multi-valent RNA-protein interactome and RNA structurome in vivo, establish a
structure-based splicing code, provide an important resource to enable mechanistic studies of RNA processing,
and pave the way for future therapeutic targeting of splicing.
选择性剪接(AS)是产生大量转录组和蛋白质组多样性的主要机制
从有限的基因组中。AS的时空调控对细胞分化和谱系的影响
决心。破坏剪接的突变会导致包括神经退化在内的一系列疾病,
肌肉营养不良和癌症。因此,理解和定位剪接对于未来的
精准医学。在过去的30年里,由于研究的重点是顺式元件及其相关的反式
因子,如RNA结合蛋白(RBPs)。热力学定律规定,RNA折叠成低游离态
然而,关于RNA-蛋白质复合体(RNP)的能量结构,人们知之甚少
大的RNP中的前-mRNA结构控制剪接,以及一般的各种RNA加工事件。我们的实验室
发明了几种基于化学交联连接的方法,使整个转录组的直接分析成为可能
体内不依赖蛋白质的RNA2D和3D结构(Paris和SHARC)。在本提案中,在目标1中,我们
开发高通量技术SHARCLIP并对其进行基准测试,以直接捕获所有RNA结构,
RNA-RNA、RNA-蛋白质和蛋白质-蛋白质相互作用。SHARCLIP在概念上类似于
分析蛋白质介导的染色质构象的方法,例如chia-PET和hiChIP,并将带来
一维RNP相互作用研究向更高维度发展。在目标2中,将paris和SHARC应用于染色质
相关的RNA和新方法SHARCLIP到关键的剪接调控因子,我们将构建全转录组
2个Encode细胞系中RNA-结构和RNA-蛋白质相互作用模型及其去卷积动力学
HepG2和K562,以及来自人类iPS分化系统的6个脑细胞系。在目标3中,进一步
结合特定的细胞类型AS程序和剪接中涉及的疾病变体,我们将测试
突变通过改变结构来起作用。以结构模型为指导,我们将结合使用
CRISPR基因组编辑和结构扰动反义寡核苷酸以测试特定结构在
调节神经元分化中的剪接。总而言之,这项提议将产生一种新技术,
同时捕获体内多价RNA-蛋白质相互作用组和RNA结构,建立
基于结构剪接编码,提供了重要的资源来实现RNA加工的机制研究,
为将来的剪接靶向治疗铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhipeng Lu其他文献
Zhipeng Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhipeng Lu', 18)}}的其他基金
High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
- 批准号:
10276941 - 财政年份:2021
- 资助金额:
$ 56.75万 - 项目类别:
High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
- 批准号:
10668426 - 财政年份:2021
- 资助金额:
$ 56.75万 - 项目类别:
High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
- 批准号:
10468205 - 财政年份:2021
- 资助金额:
$ 56.75万 - 项目类别:
Decoding the RNA Structurome: Method Development and Function Analysis.
解码 RNA 结构组:方法开发和功能分析。
- 批准号:
10058846 - 财政年份:2018
- 资助金额:
$ 56.75万 - 项目类别:
Decoding the RNA Structurome: Method Development and Function Analysis.
解码 RNA 结构组:方法开发和功能分析。
- 批准号:
9758939 - 财政年份:2018
- 资助金额:
$ 56.75万 - 项目类别:
Decoding the RNA structurome: method development and function analysis
解码 RNA 结构组:方法开发和功能分析
- 批准号:
9369932 - 财政年份:2017
- 资助金额:
$ 56.75万 - 项目类别:
相似海外基金
Greasing endocytosis in plants - understanding the role of S-acylation in receptor kinase function and internalisation
植物中的润滑内吞作用 - 了解 S-酰化在受体激酶功能和内化中的作用
- 批准号:
BB/Y003756/1 - 财政年份:2024
- 资助金额:
$ 56.75万 - 项目类别:
Research Grant
Ghrelin de-acylation inhibitors as novel compounds for Parkinson's dementia
生长素释放肽去酰化抑制剂作为治疗帕金森痴呆症的新型化合物
- 批准号:
MR/Y503435/1 - 财政年份:2024
- 资助金额:
$ 56.75万 - 项目类别:
Research Grant
S-acylation-dependent regulation of cytokine receptor signaling and cardiac maladaptation
细胞因子受体信号传导和心脏适应不良的 S-酰化依赖性调节
- 批准号:
10561406 - 财政年份:2023
- 资助金额:
$ 56.75万 - 项目类别:
Comprehensive analysis of acidic patch binder using histone acylation catalysts
使用组蛋白酰化催化剂综合分析酸性贴片粘合剂
- 批准号:
22KJ1113 - 财政年份:2023
- 资助金额:
$ 56.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
S-Acylation of transmembrane proteins in the early secretory pathway
早期分泌途径中跨膜蛋白的 S-酰化
- 批准号:
BB/X001504/1 - 财政年份:2023
- 资助金额:
$ 56.75万 - 项目类别:
Research Grant
N-terminal acylation and sorting of Helicobacter pylori lipoproteins and their role in host response to infection
幽门螺杆菌脂蛋白的 N 末端酰化和分选及其在宿主感染反应中的作用
- 批准号:
10584620 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
The Molecular Mechanisms of Glycolytic Enzyme S-acylation in Neurons
神经元糖酵解酶S-酰化的分子机制
- 批准号:
576016-2022 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Anti-CRISPR-mediated Acylation and Bioreversible Esterification for Precision Genome Editing
用于精准基因组编辑的抗 CRISPR 介导的酰化和生物可逆酯化
- 批准号:
10657417 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
High Throughput Screen for Inhibitors of the YEATS2 Histone Acylation Reader
YEATS2 组蛋白酰化酶抑制剂的高通量筛选
- 批准号:
10389517 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Roles of KAT8 complexes in governing histone acylation and mouse cerebral development
KAT8复合物在控制组蛋白酰化和小鼠大脑发育中的作用
- 批准号:
RGPIN-2019-07122 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




