High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
基本信息
- 批准号:10276941
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalBenchmarkingBindingBiologicalBiologyCellsChemicalsClinicClinicalCodeComplexCoupledCrosslinkerCryoelectron MicroscopyCrystallographyDevelopmentDiseaseGene ExpressionGeneticGoalsGuide RNAHigh-Throughput Nucleotide SequencingIn VitroInstructionLengthLife Cycle StagesLigationMeasuresMediatingMedicineMethodsModelingMolecularMolecular ConformationNucleotidesOligonucleotidesPhysiologicalPlayProteinsRNARNA SequencesRNA VirusesRNA analysisResearchResolutionRoleSamplingSignal TransductionStructureTechnologyTherapeutic Interventionbasecomputerized toolscrosslinkhuman diseaseimprovedin vivomathematical theoryprogramssmall moleculestemstructural biologytargeted treatmenttechnology developmenttherapeutic developmentthree dimensional structurethree-dimensional modelingtranscriptomeviral RNAvirtual
项目摘要
In addition to coding proteins, RNA plays fundamental roles in virtually every aspect of biology. The extreme
functional diversity of RNA stems from its ability to fold into complex structures and, like machines,
dynamically take input, transmit signal and force, and execute genetic instructions. RNA structures regulate
every step of gene expression in cells and control the life cycle of RNA viruses. As a result, physiological and
abnormal activities underlie a variety of human diseases. In recent years, targeting RNA has transitioned from
an interesting academic idea to a reality in the clinic, with the development of oligonucleotides and small
molecules that bind specific RNA sequences and structures, ushering in a new era in RNA medicine. Despite
decades of technology development, RNA structure analysis remains a major challenge, especially compared to
proteins. Traditional physical methods such as crystallography, NMR and cryo-EM has only been applied to
purified “well-behaving” samples in vitro, leaving the vast majority of cellular and viral RNAs beyond reach.
Recent chemical probing methods provided experimental constraints that improved de novo modeling but has
so far been limited to small and simple RNAs. This RNA structure analysis bottleneck has significantly limited
functional studies and therapeutic development. In this MIRA application, I outline a research program to
tackle the ultimate challenge in RNA structure biology: in vivo determination of structures and dynamics for
any RNA in any biological sample at high resolution. This proposal is based on the simple mathematical theory
that the 3D structure of any object is equivalent to the spatial distances among its components. Therefore, RNA
3D structure determination can be transformed into a problem of measuring spatial distances among the
nucleotides. To achieve this goal, we will develop ic3D (in vivo crosslinking of 3D structures, or “I see 3D”), a
technology that uses 3 new classes of “molecular rulers” - reversible chemical crosslinkers with defined lengths
- to precisely measure inter-nucleotide distances at the atomic level. Coupled with proximity ligation, high
throughput sequencing and Rosetta-based 3D modeling, ic3D enables in vivo global analysis of RNA structures
and ensembles of conformations. We will perform rigorous benchmarking against a wide selection of simple
and complex models that represent the full diversity of possible RNA structures in vivo. We will use ic3D to
discover and model 3D structures across the transcriptome. The completion of this project will have broad
impact in understanding the structural basis of RNA functions, mechanisms of RNA-mediated diseases, and
revealing new structure targets for therapeutic interventions.
除了编码蛋白质之外,RNA 几乎在生物学的各个方面都发挥着重要作用。极端的
RNA 的功能多样性源于其折叠成复杂结构的能力,并且像机器一样,
动态地接受输入,传输信号和力,并执行遗传指令。 RNA结构调节
细胞中基因表达的每一步并控制RNA病毒的生命周期。结果,生理和
异常活动是多种人类疾病的根源。近年来,靶向RNA已经从
随着寡核苷酸和小分子药物的发展,一个有趣的学术想法在临床上成为现实
结合特定 RNA 序列和结构的分子,开创了 RNA 医学的新时代。尽管
经过数十年的技术发展,RNA 结构分析仍然是一个重大挑战,特别是与
蛋白质。传统的物理方法如晶体学、核磁共振和冷冻电镜仅应用于
在体外纯化“表现良好”的样本,使得绝大多数细胞和病毒 RNA 无法达到。
最近的化学探测方法提供了改进从头建模的实验约束,但
迄今为止仅限于小而简单的RNA。 RNA结构分析的瓶颈极大地限制了
功能研究和治疗开发。在这个 MIRA 申请中,我概述了一个研究计划
应对 RNA 结构生物学的终极挑战:体内结构和动力学测定
任何生物样品中的任何 RNA 都具有高分辨率。该建议基于简单的数学理论
任何物体的 3D 结构都相当于其组成部分之间的空间距离。因此,RNA
3D结构确定可以转化为测量物体之间空间距离的问题
核苷酸。为了实现这一目标,我们将开发 ic3D(3D 结构的体内交联,或“我看到 3D”),这是一种
使用 3 类新型“分子标尺”的技术 - 具有确定长度的可逆化学交联剂
- 在原子水平上精确测量核苷酸间的距离。加上邻近连接,高
通过通量测序和基于 Rosetta 的 3D 建模,ic3D 能够对 RNA 结构进行体内全局分析
和构象的集合。我们将针对各种简单的选择进行严格的基准测试
以及代表体内可能的 RNA 结构的全部多样性的复杂模型。我们将使用 ic3D 来
发现转录组中的 3D 结构并对其进行建模。该项目的完成将产生广泛
对理解 RNA 功能的结构基础、RNA 介导的疾病的机制以及
揭示治疗干预的新结构目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhipeng Lu其他文献
Zhipeng Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhipeng Lu', 18)}}的其他基金
Decoding global RNP topologies in splicing regulation
解码拼接调节中的全局 RNP 拓扑
- 批准号:
10636541 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
- 批准号:
10668426 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
High Throughput Determination of RNA 3D Structures and Dynamics in Vivo
体内 RNA 3D 结构和动力学的高通量测定
- 批准号:
10468205 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Decoding the RNA Structurome: Method Development and Function Analysis.
解码 RNA 结构组:方法开发和功能分析。
- 批准号:
10058846 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Decoding the RNA Structurome: Method Development and Function Analysis.
解码 RNA 结构组:方法开发和功能分析。
- 批准号:
9758939 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Decoding the RNA structurome: method development and function analysis
解码 RNA 结构组:方法开发和功能分析
- 批准号:
9369932 - 财政年份:2017
- 资助金额:
$ 41.25万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 41.25万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant














{{item.name}}会员




