Integrative analysis for patient-centered outcomes and time-to-event data in Alzheimer's disease

阿尔茨海默病以患者为中心的结果和事件发生时间数据的综合分析

基本信息

  • 批准号:
    10634872
  • 负责人:
  • 金额:
    $ 233.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary The overarching goal of this project is to develop innovative, robust and plausible analytical methods to uncover individualized biomarker trajectories that interrelate with Alzheimer's onset during asymptomatic stage, dissect their associated genetic bases, and dynamically predict the overall disease risk composited with quality of life through massive and time-varying health and biomedical profiles. Alzheimer's disease (AD) is incurable, and its soaring prevalence has induced a global crisis on health and finances. Recent research reveals that AD is a continuum with pathological changes launched years before the emergence of clinical symptoms. The ongoing biomarker research plays a dominate role in tracking disease evolution and predicting AD-related outcomes, and the more accessible electronic health records (EHRs) nowadays further provide an untapped resource for a prompt management of disease progression. However, existing disease dynamics and predictive studies suffer with 1) ignoring the interplay between biomarker dynamics and disease hallmarks, 2) inadequate power under sparse and irregular measurements, 3) failure to handle time-dependent EHRs with subject-specific landmarks, and 4) oversight on predicting risk profiles accounting for patients’ quality of life. To address these barriers, the current project proposes the following aims: Aim 1) to construct AD biomarker trajectories interrelated with disease onset during asymptomatic stage and dissect associated genetic risk profiles; Aim 2) to build dynamic risk prediction and quality of life assessment tools for AD-related events integrating electronic health records, brain imaging traits and neuropsychological metrics; Aim 3) to perform systematic evaluation for the proposed methods through extensive simulations and real data analyses, and develop user-friendly analytical pipelines for the proposed methods. This project is innovative in multiple aspects for and beyond AD medical and biomedical research including but not limited to a) establish multi-domain biomarker trajectories interacted with disease onset, b) consider age and time-to-event indices for marker dynamics as well as flexible and knowledge- driven shapes, c) uncover relevant genetic underpinnings d) account for sampling bias due to delayed entry, e) develop dynamic prediction with subject-specific landmarks, f) predict risk profiles accounting for the life quality, g) develop efficient and user-friendly pipelines for our products. We will implement the proposed paradigms on three large-scale AD cohort studies containing multi-domain repeatedly measured biomedical and clinical data, with one of them linked with a massive EHR dataset of over 2.5 million patients. A successful completion of this project will pave unique ways to achieve early detection, intervention and management for AD. By contributing on laying the groundwork for proactive disease modeling based on multi-domain data sources, we anticipate the proposed research will simultaneously provide valuable insights for more general neurological and psychiatric research for public health outcomes.
项目摘要 该项目的总体目标是开发创新的、稳健的和合理的分析方法, 发现与阿尔茨海默病发作相关的个体化生物标志物轨迹, 阶段,剖析其相关的遗传基础,并动态预测综合的总体疾病风险 通过大量的、随时间变化的健康和生物医学概况来提高生活质量。阿尔茨海默病 (AD)这种疾病是无法治愈的,其流行率的飙升已经引发了一场全球性的健康和财政危机。最近 研究表明,AD是一个连续的病理变化,在AD出现前几年就开始了。 临床症状。正在进行的生物标志物研究在跟踪疾病演变和 预测AD相关的结果,以及如今更容易获得的电子健康记录(EHR) 进一步提供了用于迅速控制疾病进展的未开发资源。但现有 疾病动力学和预测性研究受到以下影响:1)忽视生物标志物动力学之间的相互作用 和疾病标志,2)稀疏和不规则测量下功率不足,3)无法处理 具有受试者特定标志的时间依赖性EHR,以及4)对预测风险概况的监督 考虑到病人的生活质量。为克服这些障碍,本项目提出以下建议 目的:1)构建与无症状期间疾病发作相关的AD生物标志物轨迹, 阶段和解剖相关遗传风险概况;目标2)建立动态风险预测和生活质量 AD相关事件的评估工具,整合电子健康记录、脑成像特征和 神经心理学指标;目的3)通过以下方法对所提出的方法进行系统评价: 广泛的模拟和真实的数据分析,并开发用户友好的分析管道 建议的方法。该项目在AD医学和生物医学领域的多个方面都具有创新性 研究包括但不限于a)建立与疾病相互作用的多域生物标志物轨迹 发作,B)考虑标记物动态的年龄和事件发生时间指数以及灵活性和知识- 驱动的形状,c)揭示相关的遗传基础d)解释由于延迟进入而导致的采样偏差, e)开发具有受试者特定标志的动态预测, 质量,g)为我们的产品开发高效和用户友好的管道。我们会实施建议的 三项大规模AD队列研究的范例,包括多领域重复测量的生物医学 和临床数据,其中一个与超过250万患者的庞大EHR数据集相关联。一 该项目的成功完成将为实现早期发现、干预和 管理AD。通过为基于以下内容的主动疾病建模奠定基础做出贡献 多领域数据源,我们预计提出的研究将同时提供有价值的 为公共卫生结果提供更广泛的神经学和精神病学研究的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifei Sun其他文献

Yifei Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yifei Sun', 18)}}的其他基金

Dynamic and personalized prediction of complex cardiovascular events.
复杂心血管事件的动态和个性化预测。
  • 批准号:
    10360163
  • 财政年份:
    2022
  • 资助金额:
    $ 233.03万
  • 项目类别:
Dynamic and personalized prediction of complex cardiovascular events.
复杂心血管事件的动态和个性化预测。
  • 批准号:
    10545274
  • 财政年份:
    2022
  • 资助金额:
    $ 233.03万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 233.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了