Dynamic and personalized prediction of complex cardiovascular events.

复杂心血管事件的动态和个性化预测。

基本信息

  • 批准号:
    10360163
  • 负责人:
  • 金额:
    $ 12.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-03 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Statistical learning methods such as random forests have proven useful in medical research. With the availability of massive biomedical and event history data collected during the course of diseases, dynamic and personalized risk prediction of future clinical events can provide valuable information to identify high-risk individuals and initiate timely treatments or interventions. Our application is motivated by the NHLBI Pooled Cohorts Study, where risk factors were measured intermittently at follow-up visits, and multiple cardiovascular disease (CVD) events could occur during the follow-up period. Existing statistical learning methods usually focus on time to the first event with baseline predictors; methods that can handle the second and subsequent clinical events or repeatedly measured time-dependent risk factors are lacking. We develop flexible random forest methods for multiple event data, where the complex event history information is fully utilized without pre-specifying the dependence structure of different events. The proposed methods can deal with the case where events are of different degrees of clinical importance and competing risks exist. The methodology will be applied to the pooled cohorts to build accurate risk prediction tools and to identify important risk factors for both CVD incidence and recurrence. We will conduct validation analysis to test whether novel statistical learning methods can outperform existing methods such as Cox-type models; we will also use forest models to provide guidance in building Cox-type models for CVD recurrence. The proposed research has the potential to advance dynamic and personalized risk prediction and to facilitate more effective prevention and treatment strategies for CVD recurrence.
项目摘要 随机森林等统计学习方法已被证明在医学研究中很有用。与可用性 在疾病过程中收集的大量生物医学和事件历史数据,动态和个性化 未来临床事件的风险预测可以提供有价值的信息,以识别高风险个体并启动 及时治疗或干预。我们的申请是由NHLBI汇总队列研究的动机,其中风险 在随访时间歇性测量因素,多个心血管疾病(CVD)事件可能 发生在随访期间。现有的统计学习方法通常侧重于第一个事件的时间, 基线预测因子;可以处理第二次和后续临床事件或重复测量的方法 缺乏与时间相关的风险因素。我们为多事件数据开发了灵活的随机森林方法,其中 充分利用了复杂事件历史信息,而无需预先指定不同事件的依赖结构, 事件所提出的方法可以处理事件具有不同程度的临床重要性的情况 竞争的风险存在。该方法将应用于合并队列,以建立准确的风险预测 工具,并确定CVD发病率和复发的重要风险因素。我们将进行验证 分析,以测试新的统计学习方法是否可以优于现有的方法,如Cox型 模型;我们还将使用森林模型为CVD复发建立Cox型模型提供指导。的 拟议的研究有可能推进动态和个性化的风险预测, 有效预防和治疗CVD复发的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifei Sun其他文献

Yifei Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yifei Sun', 18)}}的其他基金

Integrative analysis for patient-centered outcomes and time-to-event data in Alzheimer's disease
阿尔茨海默病以患者为中心的结果和事件发生时间数据的综合分析
  • 批准号:
    10634872
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
Dynamic and personalized prediction of complex cardiovascular events.
复杂心血管事件的动态和个性化预测。
  • 批准号:
    10545274
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:

相似海外基金

In-Vitro evaluation of the effectiveness of a novel Dual Drug Coated Balloon catheter to treat Vascular and cardiovascular diseases
新型双药物涂层球囊导管治疗血管和心血管疾病有效性的体外评估
  • 批准号:
    10109618
  • 财政年份:
    2024
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Launchpad
Research on the significance of sleep interventions for prevention of cardiovascular diseases in the elderly and middle-aged population
睡眠干预对中老年心血管疾病预防的意义研究
  • 批准号:
    23K09723
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
  • 批准号:
    10580116
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
Risk prediction of atrial fibrillation, cardiovascular diseases, and dementia using electrocardiogram findings: the Hisayama Study
利用心电图结果预测心房颤动、心血管疾病和痴呆症的风险:久山研究
  • 批准号:
    23K09692
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarifying the mechanisms of atherosclerotic cardiovascular diseases via genome and single cell integrated omics analyses.
通过基因组和单细胞整合组学分析阐明动脉粥样硬化性心血管疾病的机制。
  • 批准号:
    23H02905
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Patient-Oriented Research in Global Cardiovascular Diseases and Interactions with HIV
全球心血管疾病及其与艾滋病毒相互作用的以患者为导向的研究
  • 批准号:
    10762609
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
US Ten Day Seminar on the Epidemiology and Prevention of Cardiovascular Diseases and Stroke
美国心血管疾病及中风流行病学及预防十天研讨会
  • 批准号:
    10754206
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
Addressing Rural Disparities in Food and Nutrition Security and Cardiovascular Diseases Through Access to Emergency Food for Older Adults
通过为老年人提供紧急食品来解决农村地区粮食和营养安全以及心血管疾病方面的差异
  • 批准号:
    10721118
  • 财政年份:
    2023
  • 资助金额:
    $ 12.15万
  • 项目类别:
Correlationship between oral bacteria and cardiovascular diseases
口腔细菌与心血管疾病的相关性
  • 批准号:
    22K10340
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Worsening of chronic condition during COVID-19 pandemic and association of occupational factors with the incidence of cardiovascular diseases in workers with chronic condition
COVID-19 大流行期间慢性病恶化以及职业因素与慢性病工人心血管疾病发病率的关系
  • 批准号:
    22H03349
  • 财政年份:
    2022
  • 资助金额:
    $ 12.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了