Dynamics of Ligand Binding and Protein Kinase Regulation

配体结合动力学和蛋白激酶调节

基本信息

项目摘要

PROJECT SUMMARY. Protein kinases are a large family of ubiquitous signaling enzymes in human cells. Their dysregulation often underlies diseases such as cancer, making them excellent therapeutic targets. However, the high structural and sequence conservation of the protein kinase catalytic domains has complicated the development of specific inhibitors. Many clinically-successful kinase inhibitors achieve specificity in part by binding only to distinct kinase conformations. While the analysis of thousands of X-ray crystal structures of protein kinases has shown that a single kinase domain can access different active and inactive conformations, little is known about how kinases interconvert between the conformations. The rationale of this proposal is that a quantitative understanding of the stability of these conformations and the dynamics of their interconversion are key to understanding kinase activity, regulation, ligand binding and drug resistance in health and disease states. The objective of this project is to obtain a comprehensive understanding of the role of conformational dynamics in kinase function, regulation and drug resistance through altered drug dissociation rates. This proposal is part of a continuum of research centered around three questions: Q1: How do regulatory domains, interacting proteins and disease-relevant mutations affect the conformational dynamics of tyrosine kinases? Our goal is to determine how the solution dynamics of Src kinase domain responds to these biologically important perturbations. Q2: What are the molecular and cellular determinants of ligand-binding kinetics? We will test our computational model for the drug binding process experimentally, both in vitro and in cells, by assessing drug affinities and binding and dissociation kinetics. Our goal is to determine quantitative parameters for the drug binding process and how the alteration of these parameters by mutation underlies drug resistance. Q3: How can phenotypic clustering of inhibition data be used to reveal hidden kinase features? Our goal is to mine kinome-wide inhibition datasets to group kinases by their inhibition phenotype, which reflects on the evolutionary pressure and adaption that other biological functions impose on kinases. We will use structural approaches (X-ray and NMR), cellular drug binding and activity assays, ligand binding kinetics, protein engineering, chemical biology and diverse computational methods. A network of productive collaborations supports this project. The impact of this project is to provide clinicians with the mechanism of resistance mutations, medicinal chemists with kinase inhibitor pharmacodynamics and pharmacokinetics and cell biologists with parameters to understand kinase signaling. The long-term goal is to lay the foundation for the design of safe, effective, and sufficiently specific inhibitors of disease-associated protein kinases.
项目总结。蛋白激酶是人类细胞中普遍存在的一大类信号酶。他们的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus A Seeliger其他文献

An allosteric add-on
变构附加物
  • DOI:
    10.1038/nchembio.1630
  • 发表时间:
    2014-09-07
  • 期刊:
  • 影响因子:
    13.700
  • 作者:
    Zachariah H Foda;Markus A Seeliger
  • 通讯作者:
    Markus A Seeliger

Markus A Seeliger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus A Seeliger', 18)}}的其他基金

Dynamics of inhibitor binding and regulation of protein tyrosine kinases
抑制剂结合动力学和蛋白酪氨酸激酶调节
  • 批准号:
    10385978
  • 财政年份:
    2016
  • 资助金额:
    $ 40.77万
  • 项目类别:
Dynamics of inhibitor binding and regulation of protein tyrosine kinases
抑制剂结合动力学和蛋白酪氨酸激酶调节
  • 批准号:
    9313905
  • 财政年份:
    2016
  • 资助金额:
    $ 40.77万
  • 项目类别:
Dynamics of inhibitor binding and regulation of protein tyrosine kinases
抑制剂结合动力学和蛋白酪氨酸激酶调节
  • 批准号:
    9925795
  • 财政年份:
    2016
  • 资助金额:
    $ 40.77万
  • 项目类别:
Dynamics of Ligand Binding and Protein Kinase Regulation
配体结合动力学和蛋白激酶调节
  • 批准号:
    10625416
  • 财政年份:
    2016
  • 资助金额:
    $ 40.77万
  • 项目类别:
Dynamics of Ligand Binding and Protein Kinase Regulation
配体结合动力学和蛋白激酶调节
  • 批准号:
    10204514
  • 财政年份:
    2016
  • 资助金额:
    $ 40.77万
  • 项目类别:
Instrumentation grant application for forteBio Octet Red96 Biolayer Interferometry System
forteBio Octet Red96 生物层干涉测量系统的仪器拨款申请
  • 批准号:
    8826236
  • 财政年份:
    2015
  • 资助金额:
    $ 40.77万
  • 项目类别:
SRC, A PROTEIN KINASE ACTIVE IN CHRONIC MYELOID LEUKEMIA
SRC,一种在慢性粒细胞白血病中活跃的蛋白激酶
  • 批准号:
    8363361
  • 财政年份:
    2011
  • 资助金额:
    $ 40.77万
  • 项目类别:
Conformational Dynamics of Protein Tyrosine Kinases Src and Abl
蛋白酪氨酸激酶 Src 和 Abl 的构象动力学
  • 批准号:
    8197751
  • 财政年份:
    2007
  • 资助金额:
    $ 40.77万
  • 项目类别:
Conformational Dynamics of Protein Tyrosine Kinases Src and Abl
蛋白酪氨酸激酶 Src 和 Abl 的构象动力学
  • 批准号:
    7319435
  • 财政年份:
    2007
  • 资助金额:
    $ 40.77万
  • 项目类别:
Conformational Dynamics of Protein Tyrosine Kinases Src and Abl
蛋白酪氨酸激酶 Src 和 Abl 的构象动力学
  • 批准号:
    7469423
  • 财政年份:
    2007
  • 资助金额:
    $ 40.77万
  • 项目类别:

相似海外基金

Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
  • 批准号:
    2887848
  • 财政年份:
    2023
  • 资助金额:
    $ 40.77万
  • 项目类别:
    Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 40.77万
  • 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
  • 批准号:
    MR/X013227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.77万
  • 项目类别:
    Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10797940
  • 财政年份:
    2022
  • 资助金额:
    $ 40.77万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10502084
  • 财政年份:
    2022
  • 资助金额:
    $ 40.77万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10707418
  • 财政年份:
    2022
  • 资助金额:
    $ 40.77万
  • 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
  • 批准号:
    573604-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
  • 批准号:
    2610945
  • 财政年份:
    2021
  • 资助金额:
    $ 40.77万
  • 项目类别:
    Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
  • 批准号:
    2138667
  • 财政年份:
    2021
  • 资助金额:
    $ 40.77万
  • 项目类别:
    Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
  • 批准号:
    2750554
  • 财政年份:
    2021
  • 资助金额:
    $ 40.77万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了