Electrographic Seizure Pattern Modulation Biomarkers in Responsive Neurostimulation for Epilepsy
癫痫反应性神经刺激中的电描记癫痫模式调节生物标志物
基本信息
- 批准号:10652094
- 负责人:
- 金额:$ 83.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdultBiological MarkersCategoriesChildChildhoodChronicClinicalClinical TrialsComputer softwareDataData AnalyticsData SetDatabasesDetectionDevicesElectric StimulationElectroencephalographyElectrophysiology (science)EpilepsyEventExhibitsFDA approvedFrequenciesImplantIndividualIntractable EpilepsyKnowledgeLabelMachine LearningMaintenanceMethodsNeural Network SimulationOutcomePatient Outcomes AssessmentsPatient Self-ReportPatientsPatternPerformancePharmaceutical PreparationsPhasePrediction of Response to TherapyPropertyRecordsReportingSeizuresSeriesSignal TransductionSystemTechniquesTechnologyTherapeuticTimeValidationVisualWorkattenuationbiomarker validationbrain computer interfaceclinical carecohortconvolutional neural networkdeep learningepileptiformimplantable deviceimprovedindividual patientneurophysiologyneurotransmissionnovelpediatric patientspredictive markerprematurepreventresponseresponse biomarkersignal processingtooltreatment optimizationtreatment response
项目摘要
ABSTRACT
The responsive neurostimulation system (RNS) is the first FDA-approved bi-directional brain-computer
interface. Developed to treat drug-resistant epilepsy, RNS is an implanted device that automatically records
and detects electrographic seizures, then rapidly delivers electrical stimulation to suppress seizure activity.
Although the general therapeutic benefit of RNS is well-established, predicting the magnitude and timing of a
potential clinical response for each individual patient is difficult. It may take several months for a patient to
report a reliable change in seizure status, during which time the programming clinician has no objective
guidance regarding whether or not to adjust settings. Although chronic intracranial EEG recordings obtained by
the RNS device provide an ongoing window into the neurophysiological state of a patient’s seizure network,
there is little knowledge about how to use these recordings in individual patients. Thus, a critical need exists to
develop methods for using a patient’s own data to predict when seizure reduction should be expected or to
confirm objectively the presence and maintenance of a clinical response. Using RNS recordings, we recently
made the first discovery of putative electrophysiological biomarkers that indicate and potentially predict
therapeutic response to therapy in individual patients. By visually inspecting the spectral content of >5000 RNS
recordings that captured putative seizures, we identified a distinct category of electrographic seizure pattern
modulation (ESPM) that was always present in responders and never present in non-responders. In some
cases, these ESPMs were observed in RNS recordings prior to patient-reported seizure reduction, suggesting
their potential utilization in predicting therapeutic response. These putative biomarkers, however, cannot be
identified using the standard RNS clinical user interface. To overcome these data analytic barriers to therapy
optimization, we created a software concept for understanding patient-specific RNS performance using
intracranial recordings and interpolation of device-recorded data (BRAINStim). Our proposal adds state-of-the-
art expertise in machine learning and neural signal processing to develop technology for ESPM detection,
characterization, and validation. In the R61 Phase, using recordings from a cohort of 60 subjects (10 pediatric),
we will create tools for automatic detection of ESPMs and perform preliminary biomarker validation according
to the following Contexts of Use: 1) prediction biomarkers that signal impending clinical response to RNS, prior
to patient-reported seizure improvement, which would prevent premature programming decisions, and 2)
response biomarkers that can be used to confirm patient-reported outcomes during stimulation and medication
adjustments. In the R33 Phase, we will validate ESPM biomarkers in recordings from an extended cohort of
170 subjects (45 pediatric), to justify the use of ESPMs as RNS biomarkers in routine clinical care and novel
clinical trials, which will accelerate and improve seizure outcomes, in both adults and children.
抽象的
响应式神经刺激系统(RNS)是第一个由FDA批准的双向脑计算机
界面。为治疗耐药性癫痫的开发,RNS是一种自动记录的植入装置
并检测到电学癫痫发作,然后迅速提供电刺激以抑制癫痫发作活性。
尽管RNS的一般治疗益处是完善的,可以预测
每个患者的潜在临床反应都是困难的。患者可能需要几个月
报告癫痫发作状态的可靠变化,在此期间编程临床医生没有目标
有关是否调整设置的指南。尽管慢性颅内脑电图记录通过
RNS设备为患者癫痫发作网络的神经生理状态提供了一个持续的窗口,
关于如何在个别患者中使用这些录音的知识很少。那是一个关键需求
开发使用患者自己的数据来预测应何时应减少癫痫发作的方法或
客观地确认临床反应的存在和维护。使用RNS记录,我们最近
首先发现了推定的电生理生物标志物,这些生物标志物表明并可能预测
单个患者对治疗的治疗反应。通过视觉检查> 5000 RN的光谱含量
捕获假定癫痫发作的录音,我们确定了一个不同类别的电视癫痫发作模式
调制(ESPM)始终存在于响应者中,从不存在于无反应者中。在某些人中
案例,在患者报告癫痫发作之前,在RNS记录中观察到这些ESPM,这表明
它们在预测治疗反应中的潜在利用。但是,这些假定的生物标志物不能是
使用标准RNS临床用户界面确定。要克服这些数据分析障碍
优化,我们创建了一个软件概念,用于了解使用特定于患者的RNS性能
颅内记录和设备记录数据的插值(Brainstim)。我们的建议增加了
机器学习和神经信号处理方面的艺术专业知识以开发ESPM检测技术,
表征和验证。在R61阶段,使用来自60名受试者(10个小儿)的队列的记录,
我们将创建用于自动检测ESPM的工具,并根据
在以下情况下:1)预测生物标志物,该预测临时临床对RN的反应,先前
为患者报告的癫痫发作改善,这将防止过早的编程决定,2)
可以用来确认刺激和药物治疗患者报告的结果的反应生物标志物
调整。在R33阶段,我们将验证ESPM生物标志物在录音中的录音中。
170名受试者(45个儿科),以证明将ESPM用作RNS生物标志物在常规临床护理和新颖
成人和儿童的临床试验将加速和改善癫痫发作结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Mark Richardson其他文献
Robert Mark Richardson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Mark Richardson', 18)}}的其他基金
CRCNS: Deep Neural Network Approaches for Closed-Loop Deep Brain Stimulation
CRCNS:用于闭环深部脑刺激的深度神经网络方法
- 批准号:
10021999 - 财政年份:2019
- 资助金额:
$ 83.69万 - 项目类别:
CRCNS: Deep Neural Network Approaches for Closed-Loop Deep Brain Stimulation
CRCNS:用于闭环深部脑刺激的深度神经网络方法
- 批准号:
10025184 - 财政年份:2019
- 资助金额:
$ 83.69万 - 项目类别:
Effect of AADC gene transfer on L-dopa induced dyskinesia in MPTP monkeys
AADC 基因转移对左旋多巴诱导的 MPTP 猴运动障碍的影响
- 批准号:
7613935 - 财政年份:2009
- 资助金额:
$ 83.69万 - 项目类别:
Telomerase re-expression in postmorterm CNS Progenitors.
死后中枢神经系统祖细胞中端粒酶的重新表达。
- 批准号:
6643467 - 财政年份:2002
- 资助金额:
$ 83.69万 - 项目类别:
Telomerase re-expression in postmorterm CNS Progenitors.
死后中枢神经系统祖细胞中端粒酶的重新表达。
- 批准号:
6529774 - 财政年份:2002
- 资助金额:
$ 83.69万 - 项目类别:
Telomerase re-expression in postmorterm CNS Progenitors.
死后中枢神经系统祖细胞中端粒酶的重新表达。
- 批准号:
6794018 - 财政年份:2002
- 资助金额:
$ 83.69万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 83.69万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 83.69万 - 项目类别:
Programming of Epigenetic Clocks and Biomarkers from Early-life Arsenic Exposure
生命早期砷暴露的表观遗传时钟和生物标志物的编程
- 批准号:
10726009 - 财政年份:2023
- 资助金额:
$ 83.69万 - 项目类别:
The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
- 批准号:
10731224 - 财政年份:2023
- 资助金额:
$ 83.69万 - 项目类别: