A spatially organized microphysiological model of a human lymph node

人体淋巴结的空间组织微生理模型

基本信息

  • 批准号:
    10652476
  • 负责人:
  • 金额:
    $ 69.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-17 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The potential to model the human body on a microchip offers tantalizing hope of predictive drug testing and unprecedented control for mechanistic experiments. However, existing organ-on-chip systems exclude the lymph node (LN), the small and highly organized organ that initiates adaptive immune responses. Without a LN, the induction and development of antibody- or cell-mediated immunity is also largely absent. Other available in vitro LN-mimetic systems do not yet address the crucial spatial organization and local microenvironment of this tissue. As most humans want to keep their LNs, an experimentally tractable, biomimetic model of the dynamics and organization of this organ is needed both for mechanistic studies and to test new therapies. In this project, our uniquely qualified team of engineers and immunologists will develop and validate the first spatially organized, 3D-cultured microphysiological model of a lymph node (LN-chip), featuring biomimetic cellular organization and fluid flow. In Aim 1, we will establish methods to micropattern primary human immune cells in 3D culture inside a microfluidic chip, using on-chip photolithography of photo- crosslinkable gels. This innovative approach provides simultaneous control over cellular distribution, local matrix composition, and fluid flow, to replicate diffusion and migration distances for 3D cell-cell interactions. We will optimize patterning and culture conditions to maintain viability for 7 – 28 days, preserve T and B cell response to simple stimuli, and test multiple materials for the microfluidic housing. In Aim 2, we will identify the best strategy to achieve biomimetic lymph node organization by comparing the robustness of microstructure obtained by patterning chemokine gradients, stromal/endothelial cells, or lymphocytes. We will also determine the optimal fluid flow conditions for biomimetic function. In Aim 3, we will establish conditions for productive T-B cell interactions on the LN-chip leading to differentiation and production of long-lived, high-affinity antibodies. Responses on the LN-chip will be directly compared to those of ex vivo cultured human tonsils, to provide definitive data on the relevance of the model to human immunity. Finally, we will employ CRISPR/Cas9 gene editing to test the extent to which the LN-chip recapitulates human disease caused by defects in T—B interaction. In summary, this U01 project will produce validated procedures for robust and reproducible assembly of the first spatially organized LN-chip, including specific guidelines for inclusion of stromal cells and lymphocytes, and benchmarking against well-defined human T- B interactions. The platform will be broadly applicable to model inflammatory and autoimmune diseases, test vaccination strategies, and answer mechanistic questions about LN function. It will be compatible with in-line coupling to other organs-on-chip from the Tissue Chip consortium, and will allow for direct testing of patient lymphocyte function within a model tissue microenvironment, ultimately enabling both small molecule and CRISPR/CAS9 genetic based screens.
项目概要/摘要 在微芯片上模拟人体的潜力为预测药物测试带来了诱人的希望 以及对机械实验前所未有的控制。然而,现有的器官芯片系统不包括 淋巴结 (LN) 是一种小型且高度组织化的器官,可启动适应性免疫反应。如果没有 LN, 抗体或细胞介导的免疫的诱导和发展也基本上不存在。其他可用在 体外 LN 模拟系统尚未解决该系统的关键空间组织和局部微环境问题 组织。由于大多数人都希望保留他们的 LN,因此这是一种经过实验处理的动力学仿生模型 机制研究和测试新疗法都需要该器官的组织。 在这个项目中,我们独特的合格工程师和免疫学家团队将开发和 验证第一个空间组织、3D 培养的淋巴结微生理模型(LN 芯片), 具有仿生细胞组织和流体流动的特点。在目标 1 中,我们将建立微图案化方法 使用片上光刻技术在微流控芯片内进行 3D 培养的原代人类免疫细胞 可交联凝胶。这种创新方法提供了对细胞分布、局部矩阵的同时控制 成分和流体流动,以复制 3D 细胞间相互作用的扩散和迁移距离。我们将 优化图案化和培养条件以维持 7 – 28 天的活力,保留 T 和 B 细胞反应 简单的刺激,并测试微流体外壳的多种材料。在目标 2 中,我们将确定最佳策略 通过比较获得的微观结构的稳健性来实现仿生淋巴结组织 图案化趋化因子梯度、基质/内皮细胞或淋巴细胞。我们还将确定最佳 仿生功能的流体流动条件。在目标 3 中,我们将为 T-B 细胞的生产创造条件 LN 芯片上的相互作用导致长寿命、高亲和力抗体的分化和产生。 LN 芯片上的响应将直接与离体培养的人类扁桃体的响应进行比较,以提供 该模型与人类免疫相关性的明确数据。最后,我们将利用CRISPR/Cas9基因 编辑以测试 LN 芯片在多大程度上重现由结核病相互作用缺陷引起的人类疾病。 总之,这个 U01 项目将产生经过验证的程序,用于稳健且可重复的组装 第一个空间组织的 LN 芯片,包括包含基质细胞和淋巴细胞的具体指南, 并针对明确的人类结核病相互作用进行基准测试。该平台将广泛适用于模型 炎症和自身免疫性疾病,测试疫苗接种策略,并回答有关的机制问题 闪电网络功能。它将与组织芯片联盟的其他片上器官的在线耦合兼容, 并将最终允许在模型组织微环境中直接测试患者淋巴细胞功能 实现基于小分子和 CRISPR/CAS9 遗传的筛选。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
  • DOI:
    10.3390/mi14020435
  • 发表时间:
    2023-02-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Musgrove, Hannah B.;Saleheen, Amirus;Zatorski, Jonathan M.;Arneja, Abhinav;Luckey, Chance John;Pompano, Rebecca R.
  • 通讯作者:
    Pompano, Rebecca R.
Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1H NMR.
通过优化的茚三酮测定和 1​​ H NMR 对明胶水凝胶的部分和绝对功能化进行定量。
  • DOI:
    10.1007/s00216-020-02792-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Zatorski,JonathanM;Montalbine,AlyssaN;Ortiz-Cárdenas,JenniferE;Pompano,RebeccaR
  • 通讯作者:
    Pompano,RebeccaR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca R Pompano其他文献

Rebecca R Pompano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca R Pompano', 18)}}的其他基金

Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
  • 批准号:
    10578463
  • 财政年份:
    2023
  • 资助金额:
    $ 69.21万
  • 项目类别:
2022 Immunoengineering Gordon Research Conference
2022年免疫工程戈登研究会议
  • 批准号:
    10462069
  • 财政年份:
    2022
  • 资助金额:
    $ 69.21万
  • 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
  • 批准号:
    10019387
  • 财政年份:
    2019
  • 资助金额:
    $ 69.21万
  • 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
  • 批准号:
    10239046
  • 财政年份:
    2019
  • 资助金额:
    $ 69.21万
  • 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
  • 批准号:
    10428592
  • 财政年份:
    2019
  • 资助金额:
    $ 69.21万
  • 项目类别:
Modeling immunity with a hybrid lymph node tissue-chip
使用混合淋巴结组织芯片模拟免疫
  • 批准号:
    10059169
  • 财政年份:
    2017
  • 资助金额:
    $ 69.21万
  • 项目类别:
Modeling immunity with a hybrid lymph node tissue-chip
使用混合淋巴结组织芯片模拟免疫
  • 批准号:
    10307525
  • 财政年份:
    2017
  • 资助金额:
    $ 69.21万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了