A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
基本信息
- 批准号:10239046
- 负责人:
- 金额:$ 64.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAntibodiesAntibody AffinityAntibody FormationAutoimmune DiseasesB cell differentiationB-Cell ActivationB-LymphocytesBenchmarkingBiologyBiomimeticsCRISPR/Cas technologyCell CommunicationCell physiologyCellsCellular ImmunityClustered Regularly Interspaced Short Palindromic RepeatsCollectionComplexCouplingCulture MediaDataDefectDevelopmentDiffusionEndothelial CellsEngineeringEventFoundationsFutureGelGenerationsGenesGeneticGuidelinesHelper-Inducer T-LymphocyteHousingHumanHuman bodyImageImmuneImmunityImmunologistIn VitroInflammatoryInvestigationLeftLeukocytesLigandsLymph Node TissueLymphatic Endothelial CellsLymphocyteLymphocyte FunctionMaintenanceMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMonitorOrganOutcomePatientsPatternPharmaceutical PreparationsPhysiologicalProceduresProductionReproducibilityResearch PersonnelReticular CellSinusSliceStimulusStromal CellsStructureSystemT-LymphocyteTestingTherapeuticTissue MicroarrayTissue ModelTissuesTonsilVaccinatedWorkadaptive immune responseadaptive immunitybasecell mediated immune responsecell motilitychemokinecytokinedesigndrug testingexperimental studyfluid flowhuman diseasehuman modelimmune functionin vivoinnovationlymph nodeslymphatic vesselmicrochipmicrofluidic technologymicrophysiology systemmigrationmimeticsnovel therapeuticsorgan on a chippolydimethylsiloxanepreservationreceptorrecruitresponsescreeningsmall moleculethree dimensional cell culturevaccination strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
The potential to model the human body on a microchip offers tantalizing hope of predictive drug testing
and unprecedented control for mechanistic experiments. However, existing organ-on-chip systems exclude the
lymph node (LN), the small and highly organized organ that initiates adaptive immune responses. Without a LN,
the induction and development of antibody- or cell-mediated immunity is also largely absent. Other available in
vitro LN-mimetic systems do not yet address the crucial spatial organization and local microenvironment of this
tissue. As most humans want to keep their LNs, an experimentally tractable, biomimetic model of the dynamics
and organization of this organ is needed both for mechanistic studies and to test new therapies.
In this project, our uniquely qualified team of engineers and immunologists will develop and
validate the first spatially organized, 3D-cultured microphysiological model of a lymph node (LN-chip),
featuring biomimetic cellular organization and fluid flow. In Aim 1, we will establish methods to micropattern
primary human immune cells in 3D culture inside a microfluidic chip, using on-chip photolithography of photo-
crosslinkable gels. This innovative approach provides simultaneous control over cellular distribution, local matrix
composition, and fluid flow, to replicate diffusion and migration distances for 3D cell-cell interactions. We will
optimize patterning and culture conditions to maintain viability for 7 – 28 days, preserve T and B cell response
to simple stimuli, and test multiple materials for the microfluidic housing. In Aim 2, we will identify the best strategy
to achieve biomimetic lymph node organization by comparing the robustness of microstructure obtained by
patterning chemokine gradients, stromal/endothelial cells, or lymphocytes. We will also determine the optimal
fluid flow conditions for biomimetic function. In Aim 3, we will establish conditions for productive T-B cell
interactions on the LN-chip leading to differentiation and production of long-lived, high-affinity antibodies.
Responses on the LN-chip will be directly compared to those of ex vivo cultured human tonsils, to provide
definitive data on the relevance of the model to human immunity. Finally, we will employ CRISPR/Cas9 gene
editing to test the extent to which the LN-chip recapitulates human disease caused by defects in T—B interaction.
In summary, this U01 project will produce validated procedures for robust and reproducible assembly of
the first spatially organized LN-chip, including specific guidelines for inclusion of stromal cells and lymphocytes,
and benchmarking against well-defined human T- B interactions. The platform will be broadly applicable to model
inflammatory and autoimmune diseases, test vaccination strategies, and answer mechanistic questions about
LN function. It will be compatible with in-line coupling to other organs-on-chip from the Tissue Chip consortium,
and will allow for direct testing of patient lymphocyte function within a model tissue microenvironment, ultimately
enabling both small molecule and CRISPR/CAS9 genetic based screens.
项目总结/摘要
在微芯片上模拟人体的潜力为预测性药物测试提供了诱人的希望
和前所未有的控制机制实验。然而,现有的芯片上器官系统排除了
淋巴结(LN),小而高度组织化的器官,启动适应性免疫反应。如果没有LN,
抗体或细胞介导的免疫的诱导和发展也基本上不存在。其他可用
体外LN模拟系统尚未解决这一关键的空间组织和局部微环境,
组织.由于大多数人都想保留他们的LNs,一个实验上易于处理的动态仿生模型
这个器官的组织对于机制研究和测试新疗法都是必要的。
在这个项目中,我们独特的合格的工程师和免疫学家团队将开发和
验证淋巴结的第一个空间组织的3D培养的微生理模型(LN芯片),
具有仿生细胞组织和流体流动。在目标1中,我们将建立微图案化方法
在微流控芯片内的3D培养中的原代人类免疫细胞,使用片上光刻技术,
可交联凝胶。这种创新的方法提供了同时控制蜂窝分布,局部矩阵
组合物和流体流动,以复制3D细胞-细胞相互作用的扩散和迁移距离。我们将
优化模式和培养条件,以维持7 - 28天的活力,保持T和B细胞应答
简单的刺激,并测试微流体外壳的多种材料。在目标2中,我们将确定最佳策略
为了实现仿生淋巴结组织,
图案化趋化因子梯度、基质/内皮细胞或淋巴细胞。我们还将确定
仿生功能的流体流动条件。在目标3中,我们将建立生产性T-B细胞的条件,
在LN-芯片上的相互作用导致分化和长寿命、高亲和力抗体的产生。
LN芯片上的反应将直接与离体培养的人扁桃体的反应进行比较,以提供
该模型与人体免疫相关性的确定性数据。最后,我们将CRISPR/Cas9基因
编辑以测试LN芯片再现由T-B相互作用缺陷引起的人类疾病的程度。
总之,本U 01项目将产生经验证的程序,用于以下产品的稳健和可重现组装:
第一个空间组织的LN芯片,包括用于包含基质细胞和淋巴细胞的特定指南,
并以明确定义的人类T- B相互作用为基准。该平台将广泛适用于模型
炎症和自身免疫性疾病,测试疫苗接种策略,并回答有关
LN函数。它将与来自组织芯片联盟的其他芯片上器官的在线耦合兼容,
并且最终将允许在模型组织微环境内直接测试患者淋巴细胞功能,
从而实现基于小分子和CRISPR/CAS9基因的筛选。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca R Pompano其他文献
Rebecca R Pompano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca R Pompano', 18)}}的其他基金
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 64.04万 - 项目类别:
2022 Immunoengineering Gordon Research Conference
2022年免疫工程戈登研究会议
- 批准号:
10462069 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
- 批准号:
10019387 - 财政年份:2019
- 资助金额:
$ 64.04万 - 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
- 批准号:
10652476 - 财政年份:2019
- 资助金额:
$ 64.04万 - 项目类别:
A spatially organized microphysiological model of a human lymph node
人体淋巴结的空间组织微生理模型
- 批准号:
10428592 - 财政年份:2019
- 资助金额:
$ 64.04万 - 项目类别:
Modeling immunity with a hybrid lymph node tissue-chip
使用混合淋巴结组织芯片模拟免疫
- 批准号:
10059169 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别:
Modeling immunity with a hybrid lymph node tissue-chip
使用混合淋巴结组织芯片模拟免疫
- 批准号:
10307525 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 64.04万 - 项目类别:
Research Grant