Mitochondrial Integrated Stress Response in Neurological Diseases
神经系统疾病中的线粒体综合应激反应
基本信息
- 批准号:10403558
- 负责人:
- 金额:$ 110.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseAnabolismBrainCatabolismCellsCellular Metabolic ProcessCellular Stress ResponseCellular biologyCentral Nervous System DiseasesCessation of lifeCharacteristicsDefectDevelopmentDiseaseDisease modelEncephalopathiesEventFailureGenerationsGeneticGenetic TranscriptionHeartHumanInheritedKnowledgeMetabolicMetabolic PathwayMetabolismMissionMitochondriaMitochondrial DiseasesMuscleMutationNerve DegenerationNeurogliaNeuronsNuclearOrganellesParkinson DiseasePathogenesisPathogenicityPathologicPeripheralPlayProteinsProteomeResearchRoleSeriesSignal PathwayStressTherapeuticTissuesage related neurodegenerationbiological adaptation to stresscell typeeffective therapyhuman diseaseimprovedinnovationmitochondrial dysfunctionmitochondrial genomenervous system disorderprematureresponsetargeted treatmentvirtual
项目摘要
Mitochondria play essential roles in cell biology because are central hubs of most metabolic pathways. They are
not only essential for energy conversion, but also for the biosynthesis and catabolism of virtually all cell
constituents. Mitochondrial dysfunction causes havoc in all cells, but especially in those cell types that are highly
dependent on mitochondrial energetic and metabolic functions, such as neurons and glia. Genetic alterations of
the mitochondrial proteome, which includes more than 1000 proteins, encoded by both the nuclear and the
mitochondrial genomes, result in primary mitochondrial disorders. These diseases, for which there is currently
no effective treatment, result in severe and often fatal neurodegeneration. Mitochondrial dysfunction also plays
a role in the pathogenesis of many age-related neurodegenerative disorders, such as Alzheimer and Parkinson
disease and ALS. Therefore, addressing therapeutically the consequences of mitochondrial dysfunction could
have a profound impact on the treatment of many human disorders. A major challenge in devising effective
treatments for mitochondrial encephalopathies is our limited understanding of the ramifications of the effects of
mitochondrial dysfunction. The conventional view that these disorders are caused simply by energy failure is
inadequate, as it is becoming increasingly clear that mitochondrial dysfunction affects much more than just ATP
generation and leads to an extensive rewiring of cell metabolism. An exciting new development in the field is the
observation that various types of mitochondrial dysfunction activate transcriptional and metabolic responses that
involve multiple stress signaling pathways. We and others have identified a “mitochondrial integrated stress
response” (mtISR) in diverse genetic forms of mitochondrial disorders, suggesting that mtISR is strongly
associated with mitochondrial diseases and a potential pathogenic common denominator. We postulate that,
while in the short term these responses may be compensatory, if sustained and unresolved, they become
maladaptive and causes imbalances of key metabolites, which may be more detrimental than the energy defect
itself. While we now fully appreciate these maladaptive mechanisms in peripheral tissues, such as muscle and
heart, very little is known about them in the CNS affected by mitochondrial encephalopathies. A deeper
knowledge of the characteristics and the consequences of the mtISR in the CNS is needed to understand its
pathogenic significance and develop targets therapeutic strategies. Our research group has a long-standing
commitment to investigating the pathogenic mechanisms of mitochondrial diseases and we have accumulated
over two decades of expertise in studying the mechanisms of mitochondrial encephalopathies and mitochondrial
dysfunction in neurodegeneration. In this R35 application, we focus on fundamental gaps in knowledge on the
mtISR in mitochondrial encephalopathies by studying disease models that recapitulate human diseases. We will
use a series of approaches, both established and technologically innovative, to generate a blueprint of the
metabolic rewiring in the diseased CNS and identify targets potentially responsive to therapeutic modulation.
线粒体在细胞生物学中起着至关重要的作用,因为它是大多数代谢途径的中心枢纽。他们是
不仅对能量转换是必需的,而且对几乎所有细胞的生物合成和分解代谢都是必不可少的
选民。线粒体功能障碍会在所有细胞中造成严重破坏,特别是在那些高度
依赖于线粒体的能量和代谢功能,如神经元和胶质细胞。基因的改变
线粒体蛋白质组包括1000多种蛋白质,由细胞核和
线粒体基因组,导致原发的线粒体疾病。这些疾病,目前有
没有有效的治疗方法,会导致严重的、往往是致命的神经变性。线粒体功能障碍也起到了作用
在许多与年龄相关的神经退行性疾病的发病机制中发挥作用,如阿尔茨海默氏症和帕金森病
疾病和肌萎缩侧索硬化。因此,从治疗上解决线粒体功能障碍的后果可能
对许多人类疾病的治疗产生了深远的影响。设计有效的解决方案的主要挑战
对线粒体脑病的治疗是我们对其影响的有限理解
线粒体功能障碍。传统的观点认为,这些疾病只是由能源故障引起的
这是不够的,因为越来越明显的是,线粒体功能障碍影响的不仅仅是ATP
并导致细胞新陈代谢的广泛重新布线。该领域一个令人兴奋的新发展是
观察到各种类型的线粒体功能障碍激活了转录和代谢反应,
涉及多条应激信号通路。我们和其他人发现了一种“线粒体整合应激”
在线粒体疾病的不同遗传形式中存在“反应”(MtISR),表明mtISR是强烈的
与线粒体疾病和潜在的致病共同点有关。我们假设,
虽然在短期内,这些反应可能是补偿性的,但如果持续且未得到解决,它们将成为
适应不良,并导致关键代谢物失衡,这可能比能量缺陷更有害
它本身。虽然我们现在充分认识到外周组织中的这些适应不良机制,如肌肉和
心脏,在受线粒体脑病影响的中枢神经系统中,人们对它们知之甚少。更深一层的
需要了解中枢神经系统mtISR的特征和后果,才能理解其
致病意义和制定靶点治疗策略。我们的研究小组有一个历史悠久的
致力于研究线粒体疾病的致病机制,我们积累了
在研究线粒体脑病和线粒体机制方面有二十多年的专业知识
神经退行性变的功能障碍。在此R35应用程序中,我们重点关注以下方面的基本知识差距
通过研究概括人类疾病的疾病模型,线粒体ISR在线粒体脑病中的作用。我们会
使用一系列既有既定方法又有技术创新的方法来制定
疾病中枢神经系统的代谢重组,并确定潜在的治疗调节反应的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanni Manfredi其他文献
Giovanni Manfredi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanni Manfredi', 18)}}的其他基金
Mitochondrial Integrated Stress Response in Neurological Diseases
神经系统疾病中的线粒体综合应激反应
- 批准号:
10616130 - 财政年份:2021
- 资助金额:
$ 110.18万 - 项目类别:
Mitochondrial Integrated Stress Response in Neurological Diseases
神经系统疾病中的线粒体综合应激反应
- 批准号:
10828227 - 财政年份:2021
- 资助金额:
$ 110.18万 - 项目类别:
Mitochondrial Integrated Stress Response in Neurological Diseases
神经系统疾病中的线粒体综合应激反应
- 批准号:
10626112 - 财政年份:2021
- 资助金额:
$ 110.18万 - 项目类别:
Mitochondrial Integrated Stress Response in Neurological Diseases
神经系统疾病中的线粒体综合应激反应
- 批准号:
10237506 - 财政年份:2021
- 资助金额:
$ 110.18万 - 项目类别:
The role of the mitochondrial protein dimer CHCHD2/10 in health and disease
线粒体蛋白二聚体 CHCHD2/10 在健康和疾病中的作用
- 批准号:
10164492 - 财政年份:2020
- 资助金额:
$ 110.18万 - 项目类别:
The role of the mitochondrial protein dimer CHCHD2/10 in health and disease
线粒体蛋白二聚体 CHCHD2/10 在健康和疾病中的作用
- 批准号:
9807027 - 财政年份:2019
- 资助金额:
$ 110.18万 - 项目类别:
Mitochondrial Biogenesis and Dynamics in Health, Disease and Aging
健康、疾病和衰老中的线粒体生物发生和动力学
- 批准号:
8528297 - 财政年份:2013
- 资助金额:
$ 110.18万 - 项目类别:
Impaired amino acid metabolism in mitochondrial diseases
线粒体疾病中氨基酸代谢受损
- 批准号:
8589748 - 财政年份:2013
- 资助金额:
$ 110.18万 - 项目类别:
Impaired amino acid metabolism in mitochondrial diseases
线粒体疾病中氨基酸代谢受损
- 批准号:
8658872 - 财政年份:2013
- 资助金额:
$ 110.18万 - 项目类别:
Modulation of Oxidative phosphorylation by mitochondrial soluble adenylyl cyclase
线粒体可溶性腺苷酸环化酶对氧化磷酸化的调节
- 批准号:
8332758 - 财政年份:2009
- 资助金额:
$ 110.18万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 110.18万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 110.18万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 110.18万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 110.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




