In-silico prediction of protein-peptide interactions.
蛋白质-肽相互作用的计算机预测。
基本信息
- 批准号:10653086
- 负责人:
- 金额:$ 40.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsAreaArtificial IntelligenceAutomobile DrivingAwardBenchmarkingBindingBinding ProteinsBiologicalBiological AvailabilityBiological ProcessBiomedical ResearchCell physiologyCellsChemicalsCollaborationsCommunitiesComplexComputational BiologyComputer softwareCyclic PeptidesData SetDevelopmentDiseaseDockingDocumentationDrug DesignEducational workshopFeedbackFree EnergyFundingGoalsHalf-LifeInfluenzaInsulinLibrariesLicensingLigandsMachine LearningMalignant NeoplasmsMarketingMathematicsMediatingMedicineMetabolic DiseasesMethodsModelingModernizationMutatePathway interactionsPeptidesPerformancePeripheralPermeabilityPharmaceutical PreparationsPlayProcessProductionPropertyProteinsRenaissanceResearchRoleScientistSet proteinSignal PathwaySoftware EngineeringSoftware FrameworkSoftware ToolsSoftware ValidationSpecificityStructureTechniquesTestingTherapeuticThrombosisToxic effectTrainingUpdateValidationWorkcombinatorialcomplex datacomputerized toolscomputing resourcesdesignflexibilityglobular proteingraphical user interfaceimprovedin silicoinsightinterestinteroperabilitynovelopen sourcepeptide drugpredictive toolsprogramsprotein protein interactionreceptorscreeningsmall moleculesuccesssymposiumtherapeutic targettooltranslational applicationstranslational modeltranslational studyusabilityvirtual screening
项目摘要
IN-SILICO PREDICTION OF PROTEIN-PEPTIDE INTERACTIONS
Automated docking methods are used extensively for gaining a mechanistic understanding of the molecular
interactions underpinning cellular processes. While these tools work well for small molecules they perform
poorly for peptides and cannot handle Intrinsically Disordered Proteins (IDPs) which play very important roles
in these processes. The goal of this project is the development of an efficient and practical peptide docking
software, useful for designing therapeutic peptides and gaining insight into IDPs binding ordered proteins.
The proposed software supports biomedical applications ranging from investigating chemical pathways to
designing and optimizing therapeutic molecules for diseases such as cancer and metabolic disorders. Under the
previous award we developed and released a new method for docking fully-flexible peptides with up to 20
standard amino acids: AutoDock CrankPep (ADCP). We showed that it outperforms current state-of-the-art
docking methods. For the next award, we propose to: 1) further develop ADCP to support docking IPDs with up
to 70 amino acids and improve support for therapeutic peptides containing modified amino acids and complex
macrocycles; 2) develop peptide-specific scoring functions to increase docking success rates and methods for
predicting the free energy of binding of peptides. This will be done by exploiting the latest advances in
statistical potentials for docking, as well as applying machine-learning techniques; 3) test and validate the
software on our datasets, community benchmarks, and through our collaborations with outstanding biologists
working on biomedical applications spanning from designing drugs for thrombosis and influenza, to modeling
IDPs interacting with globular proteins; and 4) document the software and release it under an open source
license on a regular basis along with datasets we compile and update on regularly.
The proposed research will occur in the context of collaborations with experimental biologists working on
highly relevant biomedical projects and providing experimental feedback and validation. In addition, this
project will benefit from various collaborations with experts in the fields of computational biology, applied
mathematics and artificial intelligence. This docking software tool will be developed by applying best practices
in software engineering and be implemented as a modular, extensible, component-based software framework
for peptide docking. This docking engine will be part of the widely used AutoDock software suite. The ability
to model complexes formed by proteins and fully-flexible peptides or IDPs is in high demand and will greatly
extend the range of peptide-based therapeutic approaches for which automated docking can be successfully
applied. It will also support gaining insights into interactions of IDPs with proteins. As such, it will impact the
research of many medicinal chemists and biologist and extend the use of computational tools to a wider
community of scientists, thereby supporting the advancement of biomedical research.
蛋白质-肽相互作用的计算机预测
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Docking Power for Short Peptides Using Random Forest.
- DOI:10.1021/acs.jcim.1c00573
- 发表时间:2021-06-28
- 期刊:
- 影响因子:5.6
- 作者:Sanner MF;Dieguez L;Forli S;Lis E
- 通讯作者:Lis E
Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
- DOI:10.1038/nprot.2016.051
- 发表时间:2016-05
- 期刊:
- 影响因子:14.8
- 作者:Forli S;Huey R;Pique ME;Sanner MF;Goodsell DS;Olson AJ
- 通讯作者:Olson AJ
Activated protein C light chain provides an extended binding surface for its anticoagulant cofactor, protein S.
活化的蛋白 C 轻链为其抗凝辅助因子蛋白 S 提供了扩展的结合表面。
- DOI:10.1182/bloodadvances.2017007005
- 发表时间:2017
- 期刊:
- 影响因子:7.5
- 作者:Fernández,JoséA;Xu,Xiao;Sinha,RanjeetK;Mosnier,LaurentO;Sanner,MichelF;Griffin,JohnH
- 通讯作者:Griffin,JohnH
AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
- DOI:10.1371/journal.pcbi.1004586
- 发表时间:2015-12
- 期刊:
- 影响因子:4.3
- 作者:Ravindranath PA;Forli S;Goodsell DS;Olson AJ;Sanner MF
- 通讯作者:Sanner MF
Docking Flexible Cyclic Peptides with AutoDock CrankPep.
- DOI:10.1021/acs.jctc.9b00557
- 发表时间:2019-10-08
- 期刊:
- 影响因子:5.5
- 作者:Zhang Y;Sanner MF
- 通讯作者:Sanner MF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHEL F. SANNER其他文献
MICHEL F. SANNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHEL F. SANNER', 18)}}的其他基金
In-silico prediction of protein-peptide interactions.
蛋白质-肽相互作用的计算机预测。
- 批准号:
10116950 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
ADFR: A Modular Software Framework for Docking into Flexible Receptors
ADFR:用于对接灵活受体的模块化软件框架
- 批准号:
9239951 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
VISUALIZATION AND VISUAL WORKFLOW ENVIRONMENT TO ENHANCE MULTI-SCALE MODELING
可视化和可视化工作流程环境增强多尺度建模
- 批准号:
8362789 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
In-silico prediction of protein-peptide interactions.
蛋白质-肽相互作用的计算机预测。
- 批准号:
10432107 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
In-silico prediction of protein-peptide interactions.
蛋白质-肽相互作用的计算机预测。
- 批准号:
10259801 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
AutoDock-FR: A Modular Approach to Flexible Receptor Docking
AutoDock-FR:灵活受体对接的模块化方法
- 批准号:
8449664 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
AutoDock-FR: A Modular Approach to Flexible Receptor Docking
AutoDock-FR:灵活受体对接的模块化方法
- 批准号:
8255452 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
AutoDock-FR: A Modular Approach to Flexible Receptor Docking
AutoDock-FR:灵活受体对接的模块化方法
- 批准号:
8635369 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
AutoDock-FR: A Modular Approach to Flexible Receptor Docking
AutoDock-FR:灵活受体对接的模块化方法
- 批准号:
8824945 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
AutoDock-FR: A Modular Approach to Flexible Receptor Docking
AutoDock-FR:灵活受体对接的模块化方法
- 批准号:
8076706 - 财政年份:2011
- 资助金额:
$ 40.73万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 40.73万 - 项目类别:
Standard Grant














{{item.name}}会员




