Enabling Next Generation Machine Learning for Large Scale Image Analysis
实现大规模图像分析的下一代机器学习
基本信息
- 批准号:10698607
- 负责人:
- 金额:$ 93.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionArchitectureAreaArtificial IntelligenceCancer DetectionClassificationClinicalComplexComputer HardwareComputer softwareComputerized Medical RecordComputing MethodologiesDataData SetDevelopmentDiagnosisDiagnosticDimensionsEvolutionGlassGoalsGovernment AgenciesHealthcareHealthcare SystemsHigh Performance ComputingHumanImageImage AnalysisImaging problemInvestmentsLabelLaboratoriesLearningLungMachine LearningMagnetic ResonanceMarketingMedicalMedical ImagingMemoryMethodsModelingMovementNeural Network SimulationOutcomePathologistPathologyPatientsPerformancePhasePlayProcessResearchResearch PersonnelResolutionRoleScreening for Prostate CancerServicesSliceSlideSoftware FrameworkStreamStructureSystemTechniquesTechnologyTensorFlowTimeTrainingVisualization softwareX-Ray Computed Tomographyclinical diagnosticscohortdeep learningdeep learning modeldesigndigital pathologygigabytehigh resolution imagingimplementation effortsinterestlearning strategylung cancer screeningmachine learning frameworknetwork architectureneural networknext generationnoveloperationpathology imagingportabilityprototypepublic health relevancescreeningsoftware developmentsoftware infrastructurespatial relationshiptooltumoruser-friendly
项目摘要
Project Summary/Abstract
Deep learning has transformed medical image analysis by delivering clinically meaningful results on challenging
problems like prostate cancer detection and lung cancer screening. FDA approval of whole-slide digital pathology
imaging (WSIs) for primary diagnosis is further increasing interest, adoption, and investment in artificial intelli-
gence (AI) technology for pathology. Learning from large medical images using patient-level labels (PLLs) has
become an active computational pathology research area. PLLs such as pathology diagnosis or clinical outcomes
are generated through healthcare operations and are often readily available. In contrast to learning paradigms
that depend on the expert annotation of images (e.g., delineating tumor regions) and are therefore time-intensive
and limited to smaller cohorts, training directly from WSIs using PLLs will allow the development of realistic
training datasets containing tens-of-thousands of subjects that can produce models with clinically-meaningful ac-
curacy. GPU accelerators have played a significant role in advancing deep learning methods for computational
pathology tools. Machine Learning Frameworks (MLFs), e.g., Pytorch and TensorFlow, provide researchers with
abstractions to quickly develop models that utilize GPUs. The evolution of GPUs and MLFs has been driven by
the analysis of small images, and so applying these tools directly to WSIs or other large medical images like
volumetric magnetic resonance or computed tomography is challenging. Adapting medical imaging problems to
the small image paradigm leads to many compromises resulting in suboptimal performance, increased imple-
mentation effort, and increased software/design complexity (e.g., patch based techniques or multiple instance
learning). As a result, the development of scalable ML models from PLLs by directly processing WSI images
through a deep learning pipeline is infeasible today on GPUs. Recent efforts that use unified GPU memory or
streaming approaches to overcome GPU memory limits and attempt to perform end-to-end training at WSI scale
have demonstrated superior performance to annotation or MIL. However, these approaches are either slow (due
to suboptimal data movement strategies), complex to adapt/use, or highly specific to a given network architecture
(limiting the ability to develop and explore new architectures). More general-purpose, efficient, and user-friendly
frameworks are needed to allow the development of WSI scale deep learning.
This project will develop a robust software framework to facilitate seamless development and use of scalable
ML models, without the imposition of any limits on the sizes of handled images, unhindered by the limited memory
capacity in GPUs. The proposed SSTEP (Seamless Scalable Tensor-Expression Execution via Partitioning) soft-
ware framework will allow scalable and portable neural network models that directly process full high-resolution
images of arbitrary size for training or inference, on any (multi) GPU platform. SSTEP will allow the development
of novel deep learning paradigms that are purpose-built for medical applications, and will enable developers to
rapidly create and evaluate these tools using familiar MLFs - PyTorch or TensorFlow.
项目总结/摘要
深度学习通过提供具有临床意义的结果来改变医学图像分析,
前列腺癌检测和肺癌筛查等问题。FDA批准全切片数字病理学
用于初步诊断的WSIs进一步增加了人工智能的兴趣、采用和投资,
人工智能(AI)技术用于病理学。使用患者级标签(PLL)从大型医学图像中学习,
成为活跃的计算病理学研究领域。病理诊断或临床结局等PLL
是通过医疗保健操作产生的,通常很容易获得。与学习范式相反,
其取决于图像的专家注释(例如,描绘肿瘤区域)并且因此是时间密集的
并且仅限于较小的队列,使用PLL直接从WSI进行培训将允许开发现实的
训练数据集包含成千上万的主题,可以产生具有临床意义的模型,
副牧师GPU加速器在推进计算深度学习方法方面发挥了重要作用。
病理学工具机器学习框架(MLF),例如,Pytorch和TensorFlow为研究人员提供了
抽象以快速开发利用GPU的模型。GPU和MLF的发展是由以下因素推动的:
小图像的分析,因此将这些工具直接应用于WSI或其他大型医学图像,
体积磁共振或计算机断层摄影是具有挑战性的。使医学成像问题适应
小图像范例导致许多折衷,导致次优性能、增加的简单性,
管理工作,以及增加的软件/设计复杂性(例如,基于修补程序的技术或多实例
学习)。因此,通过直接处理WSI图像,
通过深度学习管道在GPU上是不可行的。最近的努力,使用统一的GPU内存或
流方法来克服GPU内存限制,并尝试在WSI规模上执行端到端训练
已经证明了比注释或MIL具有上级性能。然而,这些方法要么很慢(由于
次优的数据移动策略)、适应/使用复杂,或高度特定于给定的网络架构
(限制了开发和探索新架构的能力)。更加通用、高效和用户友好
需要框架来允许开发WSI规模的深度学习。
本项目将开发一个强大的软件框架,以促进无缝开发和使用可扩展的
ML模型,对处理图像的大小没有任何限制,不受有限内存的限制
GPU的能力。SSTEP(Seamless Scalable Tensor-Expression Execution via Partitioning,无缝可扩展张量表达式执行)
ware框架将允许可扩展和可移植的神经网络模型,直接处理全高分辨率
在任何(多)GPU平台上,可以生成任意大小的图像,用于训练或推理。SSTEP将允许开发
新的深度学习范式,专门为医疗应用而构建,并将使开发人员能够
使用熟悉的MLF(PyTorch或TensorFlow)快速创建和评估这些工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerald Sabin其他文献
Gerald Sabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerald Sabin', 18)}}的其他基金
Enabling Next Generation Machine Learning for Large Scale Image Analysis
实现大规模图像分析的下一代机器学习
- 批准号:
10384903 - 财政年份:2021
- 资助金额:
$ 93.74万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 93.74万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 93.74万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 93.74万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 93.74万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 93.74万 - 项目类别:
Standard Grant