Protein Knowledge Networks and Semantic Computing for Disease Discovery
用于疾病发现的蛋白质知识网络和语义计算
基本信息
- 批准号:10698082
- 负责人:
- 金额:$ 43.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-25 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlzheimer&aposs DiseaseApplications GrantsBiomedical ResearchCOVID-19Case StudyCodeCommunitiesComputational algorithmComputer SystemsDataDatabasesDiseaseDrug TargetingEducational workshopEnsureFAIR principlesFosteringGenerationsGenesGenotypeGrowthHealthHumanInformation RetrievalKnowledgeKnowledge DiscoveryLinkLiteratureMachine LearningMiningModelingModificationMorphologic artifactsNatural Language ProcessingOntologyOrganismPharmaceutical PreparationsPhenotypePost-Translational Protein ProcessingProtein AnalysisProteinsReproducibilityResearchResource Description FrameworkResource SharingResourcesScientistSemanticsSystemSystems DevelopmentTextTrainingVariantbioinformatics infrastructurecommunity engagementcomputational reasoningdata modelingdeep learningdrug repurposingfundamental researchhackathonhuman diseaseimprovedlearning strategypandemic diseasetext searchingtoolweb site
项目摘要
Protein Knowledge Networks and Semantic Computing for Disease Discovery
The growing volume and breadth of information from the scientific literature and biomedical databases
pose challenges to the research community to exploit the content for discovery. This MIRA grant
application will advance our knowledge mining and semantic computing system to accelerate data-driven
discovery for understanding of gene-disease-drug relationships. We have employed natural language
processing and machine learning approaches in a generalizable framework for bioentity and relation
extraction from large-scale text. Our Protein Ontology supports protein-centric semantic integration of
biomedical data for both human understanding and computational reasoning. We have also developed a
resource to support functional interpretation and analysis of protein post-translational modifications
(PTMs) across modification types and organisms. Building on our computational algorithms,
bioinformatics infrastructure and community interactions, we will further develop literature mining tools to
support automated information extraction across the bibliome and open linked data models for semantic
integration of biomedical data from heterogeneous resources. Our text mining tools will be trained for
different use cases using deep learning methods. We will develop RDF (Resource Description
Framework) semantic models in an increasingly computable, inferable and explainable knowledge
system to assist in hypothesis generation. We will present evidence in the form of textual artifacts and
semantic models to ensure unbiased analysis and interpretation of results to promote rigorous and
reproducible research. We will develop scientific case studies to drive the system development.
Examples include PTM disease variant and enrichment analyses for drug target identification, genotype-
phenotype knowledge mining for Alzheimer's Disease understanding, and gene-disease-drug knowledge
network construction for COVID-19 drug repurposing. To foster community engagement, we will host
workshops and hackathons to address critical fundamental research questions and emerging disease
scenarios. We have fully adopted the FAIR (Findable, Accessible, Interoperable, Reusable) principles for
resource sharing. All data, tools and research results will be broadly disseminated from the project
website, accessible programmatically via RESTful API, queryable via SPARQL endpoints, and
dockerized for community code reuse. The successful completion of this research will thus support
scalable, integrative and collaborative knowledge discovery to accelerate disease understanding and
drug target discovery.
蛋白质知识网络和语义计算在疾病发现中的应用
科学文献和生物医学数据库中不断增长的信息量和广度
向研究界提出挑战,以利用内容进行发现。这笔米拉奖金
应用将推进我们的知识挖掘和语义计算系统,以加速数据驱动
了解基因-疾病-药物关系的发现。我们使用了自然语言
生物实体和关系泛化框架中的处理和机器学习方法
从大规模文本中提取。我们的蛋白质本体支持以蛋白质为中心的语义集成
用于人类理解和计算推理的生物医学数据。我们还开发了一种
支持蛋白质翻译后修饰的功能解释和分析的资源
(PTMS)跨修饰类型和生物体。以我们的计算算法为基础,
生物信息学基础设施和社区互动,我们将进一步开发文献挖掘工具,以
支持跨书目和开放链接数据模型的自动信息提取,以实现语义
整合来自不同来源的生物医学数据。我们的文本挖掘工具将针对
使用深度学习方法的不同用例。我们将开发RDF(资源描述
框架)在日益可计算、可推断和可解释的知识中的语义模型
辅助假设生成的系统。我们将以文本文物的形式提供证据
语义模型确保对结果的无偏见分析和解释,以促进严谨和
可重复的研究。我们将开展科学的案例研究,以推动系统开发。
例如,用于药物靶标识别的PTM疾病变异和浓缩分析、基因分型--
阿尔茨海默病的表型知识挖掘和基因-疾病-药物知识
新冠肺炎毒品再利用网络建设。为了促进社区参与,我们将主办
研讨会和黑客松,以解决关键的基础研究问题和新出现的疾病
场景。我们完全采用了公平(可发现、可访问、可互操作、可重复使用)的原则
资源共享。所有数据、工具和研究成果都将通过该项目广泛传播
网站,可通过REST风格的API以编程方式访问,可通过SPARQL端点查询,以及
停靠以实现社区代码重用。因此,这项研究的成功完成将支持
可扩展、集成和协作的知识发现,以加快对疾病的了解和
药物靶点的发现。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses.
- DOI:10.1186/s12870-022-03477-0
- 发表时间:2022-03-08
- 期刊:
- 影响因子:5.3
- 作者:Hayford RK;Serba DD;Xie S;Ayyappan V;Thimmapuram J;Saha MC;Wu CH;Kalavacharla VK
- 通讯作者:Kalavacharla VK
KSFinder-a knowledge graph model for link prediction of novel phosphorylated substrates of kinases.
- DOI:10.7717/peerj.16164
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Anandakrishnan M;Ross KE;Chen C;Shanker V;Cowart J;Wu CH
- 通讯作者:Wu CH
Text mining of CHO bioprocess bibliome: Topic modeling and document classification.
- DOI:10.1371/journal.pone.0274042
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
A knowledge graph representation learning approach to predict novel kinase-substrate interactions.
- DOI:10.1039/d1mo00521a
- 发表时间:2022-10-31
- 期刊:
- 影响因子:2.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CATHY H. WU其他文献
CATHY H. WU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CATHY H. WU', 18)}}的其他基金
Protein Knowledge Networks and Semantic Computing for Disease Discovery
用于疾病发现的蛋白质知识网络和语义计算
- 批准号:
10472776 - 财政年份:2021
- 资助金额:
$ 43.34万 - 项目类别:
Protein Knowledge Networks and Semantic Computing for Disease Discovery
用于疾病发现的蛋白质知识网络和语义计算
- 批准号:
10207002 - 财政年份:2021
- 资助金额:
$ 43.34万 - 项目类别:
Delaware Clinical and Translational Research ACCEL Program (BERD Core)
特拉华州临床和转化研究 ACCEL 计划(BERD 核心)
- 批准号:
10721015 - 财政年份:2013
- 资助金额:
$ 43.34万 - 项目类别:
Linking Text Mining and Data Mining for Biomedical Knowledge Discovery
连接文本挖掘和数据挖掘以发现生物医学知识
- 批准号:
8130991 - 财政年份:2010
- 资助金额:
$ 43.34万 - 项目类别:
Linking Text Mining and Data Mining for Biomedical Knowledge Discovery
连接文本挖掘和数据挖掘以发现生物医学知识
- 批准号:
8318246 - 财政年份:2010
- 资助金额:
$ 43.34万 - 项目类别:
Linking Text Mining and Data Mining for Biomedical Knowledge Discovery
连接文本挖掘和数据挖掘以发现生物医学知识
- 批准号:
7886453 - 财政年份:2010
- 资助金额:
$ 43.34万 - 项目类别:
PRO: A Protein Ontology in Open Biomedical Ontologies
PRO:开放生物医学本体中的蛋白质本体
- 批准号:
7895280 - 财政年份:2009
- 资助金额:
$ 43.34万 - 项目类别:
PRO: A Protein Ontology in OBO Foundry for Scalable Integration of Biomedical Knowledge
PRO:OBO Foundry 中的蛋白质本体,用于生物医学知识的可扩展整合
- 批准号:
8964875 - 财政年份:2007
- 资助金额:
$ 43.34万 - 项目类别:
PRO: A Protein Ontology in Open Biomedical Ontologies
PRO:开放生物医学本体中的蛋白质本体
- 批准号:
7796395 - 财政年份:2007
- 资助金额:
$ 43.34万 - 项目类别:
PRO: A Protein Ontology in Open Biomedical Ontologies
PRO:开放生物医学本体中的蛋白质本体
- 批准号:
7393317 - 财政年份:2007
- 资助金额:
$ 43.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Research Grant