Computational Imaging of Renal Structures for Diagnosing DiabeticNephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
基本信息
- 批准号:10665182
- 负责人:
- 金额:$ 28.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAlbuminsAlbuminuriaArchitectureBiological MarkersBiometryBiopsyCharacteristicsClassificationClassification SchemeClinicalClinical DataCommunitiesComputer ModelsComputing MethodologiesConsumptionCost SavingsCreatinineDataDetectionDevelopmentDiabetes MellitusDiabetic NephropathyDiagnosisDiagnostic ProcedureDiseaseDisease ProgressionEarly InterventionElementsEnd stage renal failureEyeFeedbackFunctional disorderFutureGlomerular Filtration RateGlucoseGoalsHandHistologicHistopathologyHumanImageImage AnalysisInterventionKidneyKidney DiseasesKidney FailureLeadManualsMeasurableMeasurementMeasuresMedicareMethodsMicroalbuminuriaMicroscopicModelingMorphologyMusNeural Network SimulationOutcomePathologicPathologistPatientsPerformancePhysiologicalPrecision therapeuticsProteinsRefractoryRenal TissueResearchResourcesRiskRisk EstimateSecondary toSerumSeveritiesStagingStainsStandardizationStreptozocinStructural ModelsStructureTherapeutic InterventionThinnessTimeTissue imagingTissuesTrainingUrineVariantVisualWorkautoencoderbaseclinical biomarkersclinically relevantcomputer studiescomputerized toolsconvolutional neural networkcostdetection methoddiabeticdigitalfollow-uphistological imagehuman datahuman imagingimprovedinformation modelinnovationkidney biopsymouse modelnetwork modelsnovelpersonalized diagnosticspredictive markerprognosticprotein biomarkersstatisticstooltreatment responseurinary
项目摘要
Project Summary
At the current rate, one in three U.S. adults will be diabetic by 2050. A disease secondary to diabetes is diabetic
nephropathy (DN), which causes end-stage renal disease (ESRD) for >225K U.S. patients (50% of all ESRD
cases), accounting for >$19K in yearly Medicare costs for each patient. Measurement of minute urinary albumin
(microalbuminuria) is the most common non-invasive clinical biomarker of DN. In order to conclusively define
DN severity, pathologists conduct qualitative manual estimation of glomerular structural damage in renal
biopsies. However, renal glomerular structure in DN biopsies does not often correlate with less invasive clinical
biometrics (e.g., estimated glomerular filtration rate, urine protein, serum creatinine and glucose levels). This
traditional diagnostic method is approximate, subjected to user bias, time-consuming, and has low diagnostic
precision in early disease stages; further, manual hand identified features may not always accurately predict
disease progression. Computational image analysis offers the opportunity to project clinical biometrics onto
glomerular histological structures. This method provides finer precision in identifying structural changes that lead
to physiological changes, which in turn reduces the required clinical resources and time for diagnosis, and
provides clinicians with greater feedback to improve early intervention. We have developed computational tools
to quantify renal structures in human DN biopsies. Our tools quantify glomerular features in histological renal
tissue images more efficiently than manual methods. We have also derived a quantitative progression risk score
(PRS) describing DN progression risk estimated off only a single biopsy point. Here, we will rigorously analyze
the performance of these methods to predict disease progression using histological images of human DN renal
biopsies. We will computationally quantify morphologically diverse DN-indicative intra-glomerular features. We
will analytically integrate computationally derived glomerular features with clinical biometrics in order to develop
patient-specific PRS to identify patients at risk of renal failure. Since human renal DN data is sparse, we will also
use murine data, which can be generated in large amounts in a controlled fashion, to initially train the
computational models. We will then refine the model for clinical use by fine-tuning the parameters using human
data. The innovation is in the novel integration of traditional clinical detection methods with traditional diagnostic
methods, under a computational schema for enhanced precision. This integration will lead to computational
disease predicting biomarkers of the earliest measurable renal DN dysfunction. We will study the predictive
power of these markers to foretell future clinical endpoints from earlier time points. These methods support the
development of quantifiable prognostic and predictive information, which is dynamic over the disease course,
easily discriminated, and is highly informative for modeling disease progression or response to therapy. This
study will 1) enable earlier clinical predictions, thus extending windows for interventions of evolving DN; and 2)
work as a pilot platform for future studies to computationally derive renal biomarkers predictive of other diseases.
项目总结
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generative Modeling of Histology Tissue Reduces Human Annotation Effort for Segmentation Model Development.
组织学组织的生成建模减少了分割模型开发的人工注释工作。
- DOI:10.1117/12.2655282
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lutnick,Brendon;Lucarelli,Nicholas;Sarder,Pinaki
- 通讯作者:Sarder,Pinaki
A Distributed System Improves Inter-Observer and AI Concordance in Annotating Interstitial Fibrosis and Tubular Atrophy.
分布式系统提高了观察者间和人工智能在注释间质纤维化和肾小管萎缩方面的一致性。
- DOI:10.1117/12.2581789
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shashiprakash,AvinashKammardi;Lutnick,Brendon;Ginley,Brandon;Govind,Darshana;Lucarelli,Nicholas;Jen,Kuang-Yu;Rosenberg,AviZ;Urisman,Anatoly;Walavalkar,Vighnesh;Zuckerman,JonathanE;Delsante,Marco;Bissonnette,MeiLinZ;Tomaszewski
- 通讯作者:Tomaszewski
Automated detection and quantification of Wilms' Tumor 1-positive cells in murine diabetic kidney disease.
小鼠糖尿病肾病中肾母细胞瘤 1 阳性细胞的自动检测和定量。
- DOI:10.1117/12.2581387
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Govind,Darshana;Santo,BrianaA;Ginley,Brandon;Yacoub,Rabi;Rosenberg,AviZ;Jen,Kuang-Yu;Walavalkar,Vignesh;Wilding,GregoryE;Worral,AmberM;Mohammad,Imtiaz;Sarder,Pinaki
- 通讯作者:Sarder,Pinaki
Automated Reference Kidney Histomorphometry using a Panoptic Segmentation Neural Network Correlates to Patient Demographics and Creatinine.
使用全景分割神经网络的自动参考肾脏组织形态测量与患者人口统计数据和肌酐相关。
- DOI:10.1117/12.2655288
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ginley,Brandon;Lucarelli,Nicholas;Zee,Jarcy;Jain,Sanjay;Han,SeungSeok;Rodrigues,Luis;Wong,MichelleL;Jen,Kuang-Yu;Sarder,Pinaki
- 通讯作者:Sarder,Pinaki
Probabilistic modeling of Diabetic Nephropathy progression.
糖尿病肾病进展的概率模型。
- DOI:10.1117/12.2549171
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Border,Samuel;Jen,Kuang-Yu;Dos-Santos,WashingtonLc;Tomaszewski,John;Sarder,Pinaki
- 通讯作者:Sarder,Pinaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinaki Sarder其他文献
Pinaki Sarder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinaki Sarder', 18)}}的其他基金
A Cloud Based Distributed Tool for Computational Renal Pathology
基于云的分布式计算肾脏病理学工具
- 批准号:
10594498 - 财政年份:2022
- 资助金额:
$ 28.59万 - 项目类别:
A Cloud Based Distributed Tool for Computational Renal Pathology
基于云的分布式计算肾脏病理学工具
- 批准号:
10669431 - 财政年份:2022
- 资助金额:
$ 28.59万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing Diabetic Nephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10228110 - 财政年份:2018
- 资助金额:
$ 28.59万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing Diabetic Nephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10208865 - 财政年份:2018
- 资助金额:
$ 28.59万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 28.59万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 28.59万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 28.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 28.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 28.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




