A Cloud Based Distributed Tool for Computational Renal Pathology
基于云的分布式计算肾脏病理学工具
基本信息
- 批准号:10594498
- 负责人:
- 金额:$ 20.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArteriesArtificial IntelligenceAtlasesAtrophicBasic ScienceBiometryChronicClassificationClinicalCollaborationsCollectionComputer AnalysisComputer softwareCreatinineDataData SetDevelopmentDiabetic NephropathyDiagnosticFibrosisGrowthHealth protectionHealthcareHistologyHumanImageImage AnalysisIndividualInformaticsInstitutionInternetInvestigationKidneyKidney DiseasesLabelMeasurementMetadataMicroanatomyModelingMolecularMulticenter StudiesNatureNephrologyNephrotic SyndromeOnline SystemsPathologistPathologyPerformancePlayPlug-inRenal TissueResearchResearch PersonnelScienceScientistSerumStructureSystemTechniquesTestingTrainingTubular formationVertebral columnVisual FieldsVisualizationarteriolecloud basedcloud storagecomputerized toolsdigitaldigital pathologyempowermentfederated learningimaging informaticsimprovedinterstitialkidney biopsymachine visionmembernovelpathology imagingprecision medicineprognosticresearch studyspatial integrationtooltranscriptomicswhole slide imaging
项目摘要
Quantitative computational analysis of digital pathology whole slide images (WSIs) has shown increasing
promise for precision medicine applications in last decade. In recent years, this progress has extended to renal
pathology, while seeing a growing need of objective quantification of deep features from large digital WSIs of
renal tissues. The current standard of routine brightfield visual assessment of renal biopsies is unable to elicit
and quantify the deep features from large WSIs elicited by machine vision techniques. Existing computational
renal pathology tools primarily focus on extraction of renal micro-compartments and computational classification
of renal diseases. However, understanding the correlation between deep features of renal micro-compartments
and clinical biometrics and correlations with molecular level data remain as opportunities for investigation and
discovery. A major gap that needs to be closed is that the tools developed by computational researchers are not
in a format that can be easily implemented by pathology end-users. The availability of plug-and-play tools will
empower renal pathologists and biologists engaged in kidney research, and offer exponential growth in research
studies using increasingly available digital datasets across various kidney diseases via consortia including the
Kidney Precision Medicine Project, Nephrotic Syndrome Study Network, Cure Glomerulonephropathy, and
Human Biomolecular Atlas Project. To address the above gap, experts from computational imaging (Dr. Sarder),
software science (Mr. Manthey), nephropathology/basic science (Dr. Rosenberg), and nephrology (Dr. Han)
have teamed up to develop a web-cloud based end-user software for nephropathologists, nephrologists, and
basic scientists. The proposed tool emerges from ongoing collaboration between the team members. The
proposed software will offer the following functionalities to renal pathology end-users: (i) cloud storage and
visualization of digital renal pathology WSIs and associated metadata; (ii) microanatomic/histomorphologic
annotation capability in an easy-to-use web-based visualization system, allowing users to collaborate while
conducting annotation; (iii) automated plug-and-play plugins that would allow users to segment multi-scale renal
structures for a large batch of renal tissue WSIs, and (iv) plugins to refine renal micro-compartmental
segmentation in a human-artificial-intelligence-loop set-up where humans and AI system collaborate in the cloud
to refine the segmentation models iteratively; and finally, (v) measurement of deep image features on the
segmented renal structures to enable diagnostic and prognostic research for the spectrum of renal diseases.
The distributed tool will facilitate multi-center studies using federated learning where individual centers will not
need to export data with protected healthcare information outside their institutes, while still participating in training
the proposed system to improve segmentation on their own institutional data. Finally, the system will offer end-
users the ability to integrate spatial transcriptomics molecular data with image data in the same system to allow
users to navigate the images as well as molecular data in a web-cloud set-up for new scientific discovery.
数字病理学全切片图像(WSIs)的定量计算分析显示,
在过去的十年里,精准医疗的应用前景广阔。近年来,这一进展已扩展到肾脏
病理学,同时看到越来越需要从大型数字WSI中客观量化深层特征,
肾组织肾活检常规明视野视觉评估的当前标准无法引出
并量化由机器视觉技术引起的大型WSI的深度特征。现有计算
肾脏病理学工具主要集中于肾脏微区室的提取和计算分类
肾脏疾病。然而,了解肾脏微室的深层特征之间的相关性
和临床生物统计学和与分子水平数据的相关性仍然是研究的机会,
的发现需要弥补的一个主要差距是,计算研究人员开发的工具并不
以病理学最终用户可以容易地实现的格式。即插即用工具的可用性将
增强从事肾脏研究的肾脏病理学家和生物学家的能力,并提供研究的指数增长
研究使用越来越多的数字数据集,通过联盟,包括
肾脏精准医学项目,肾病综合征研究网络,治愈肾小球肾病,
人类生物分子图谱计划。为了解决上述差距,来自计算成像(Sarder博士),
软件科学(Manthey先生)、肾脏病理学/基础科学(Rosenberg博士)和肾脏病学(Han博士)
已经联手开发了一个基于网络云的最终用户软件,用于肾脏病理学家,肾脏病学家,
基础科学家拟议的工具来自团队成员之间的持续合作。的
拟议的软件将为肾脏病理学最终用户提供以下功能:㈠云存储和
数字肾脏病理学WSI和相关元数据的可视化;(ii)显微解剖学/组织形态学
在一个易于使用的基于Web的可视化系统中的注释功能,允许用户在
进行注释;(iii)自动化即插即用插件,允许用户分割多尺度肾脏
用于大批量肾组织WSI的结构,以及(iv)用于细化肾微室间结构的插件。
在人工智能循环设置中进行分割,其中人类和AI系统在云中进行协作
迭代地细化分割模型;以及最后,(v)测量
分割的肾脏结构,使诊断和预后研究的肾脏疾病谱。
该分布式工具将使用联合学习促进多中心研究,而单个中心则不会
需要在其研究所之外导出受保护的医疗保健信息的数据,同时仍参与培训
拟议的系统,以改善自己的机构数据的分割。最后,该系统将提供端-
用户能够将空间转录组学分子数据与图像数据集成在同一系统中,
用户可以在网络云设置中导航图像和分子数据,以进行新的科学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinaki Sarder其他文献
Pinaki Sarder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinaki Sarder', 18)}}的其他基金
A Cloud Based Distributed Tool for Computational Renal Pathology
基于云的分布式计算肾脏病理学工具
- 批准号:
10669431 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing DiabeticNephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10665182 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing Diabetic Nephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10228110 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing Diabetic Nephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10208865 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
相似海外基金
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
- 批准号:
22KJ2601 - 财政年份:2023
- 资助金额:
$ 20.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular identification of the oxygen sensor(s) in the fetal ductus arteriosus and pulmonary artery: an integrated multiomic comparison of mitochondria in vital fetal arteries with opposing oxygen responses
胎儿动脉导管和肺动脉中氧传感器的分子识别:对胎儿重要动脉中具有相反氧反应的线粒体进行综合多组学比较
- 批准号:
462691 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Operating Grants
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Discovery Grants Program - Individual
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10337722 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10590708 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Pregnenolone constricts cerebral vascular arteries through the direct modulation of BK ion channels
孕烯醇酮通过直接调节 BK 离子通道收缩脑血管动脉
- 批准号:
10441131 - 财政年份:2021
- 资助金额:
$ 20.21万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
DGECR-2021-00028 - 财政年份:2021
- 资助金额:
$ 20.21万 - 项目类别:
Discovery Launch Supplement
Association of brain temperature increase and cerebrospinal fluid dynamics in chronic brain ischemia due to main trunk occlusion of cerebral arteries
脑动脉主干闭塞所致慢性脑缺血脑温度升高与脑脊液动力学的关系
- 批准号:
21K09108 - 财政年份:2021
- 资助金额:
$ 20.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10195510 - 财政年份:2021
- 资助金额:
$ 20.21万 - 项目类别:
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10405492 - 财政年份:2021
- 资助金额:
$ 20.21万 - 项目类别: