Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence

通过多组学和人工智能实现阿尔茨海默病药物发现

基本信息

  • 批准号:
    10661394
  • 负责人:
  • 金额:
    $ 20.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT There is a fundamental gap in our understanding of how amyloid beta oligomers (AβO) induce neurotoxicity and neuron death in Alzheimer’s disease (AD), as evidenced by a dearth of therapies to prevent or halt AD progression. Continued existence of this knowledge gap represents a major issue for public health and the mission of the NIH because, until it is filled, development of treatments for neurodegeneration in AD will remain largely intractable. The long-term goal of this work is to discover pathways that enable resistance to AβO- induced neurotoxicity thereby allowing discovery of new AD therapeutics. The overall objective here, which is the next step in pursuit of this goal, is to build AI that accurately predicts the ability of drug candidates to cure or prevent toxicity of AβO in human stem cell-derived cortical glutamatergic neurons. To train this AI, a library of proteomic and metabolomic (hereafter referred to as multi-omic) phenotypes will be generated from neurons that are: 1) healthy, 2) AβO-treated (AD-like), or 3) drug library+AβO-treated. The central hypothesis is that some drugs at least partially palliate AβO-induced neurotoxicity, which is observable as a shift in multi-omic state toward the healthy state, and that AI can learn to predict this curative potential from drug structures. This hypothesis is based on preliminary data generated by the applicant and literature. The rationale for the proposed research is that mapping the difference in multi-omic phenotypes of healthy and AβO-stressed neurons, and mapping how chemical structures induce changes between those states, will allow AI to learn to make accurate predictions of whether additional, unmeasured molecules can improve neuron health. This will result in new and innovative approaches for prevention and treatment of AD. Guided by preliminary data and literature, this hypothesis will be tested by pursuing two specific aims: 1) validate the multi-omic phenotype landscape of healthy and AD-like neurons; and 2) build AI to discover new drugs that prevent AβO-induced neuron death in AD. The first aim will validate the human disease relevance of our model system using cell- based assays and by comparing omic profiles from our system to those observed in human AD brains. The second aim will build a map of how drugs candidates alter neural multi-omic states to use for training predictive AI. Completion of these aims will contribute (1) an in vitro system that mimics physiological milieu, and also (2) molecular ‘omics’ signatures of those healthy and AD-like human iPSC-derived neural cells, which are two areas of high program relevance defined in NOT-AG-19-007. This approach is innovative, in the applicant’s opinion, because it departs from the status quo by using highly translatable human iPSC-derived neurons for unbiased discovery of palliative drug candidates using a unique combination of multi-omics and AI. This contribution will be significant because it is expected to vertically advance our understanding of basic neuron stress resistance, as well as result in the first drugs that prevent AβO neural toxicity. Ultimately, such knowledge will be useful for other neurodegenerative disorders of aging.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesse Meyer其他文献

Jesse Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jesse Meyer', 18)}}的其他基金

Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10470828
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10798946
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10633047
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence
通过多组学和人工智能实现阿尔茨海默病药物发现
  • 批准号:
    10301220
  • 财政年份:
    2021
  • 资助金额:
    $ 20.88万
  • 项目类别:
Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10272870
  • 财政年份:
    2021
  • 资助金额:
    $ 20.88万
  • 项目类别:
Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence
通过多组学和人工智能实现阿尔茨海默病药物发现
  • 批准号:
    10473842
  • 财政年份:
    2021
  • 资助金额:
    $ 20.88万
  • 项目类别:

相似海外基金

Drug Discovery of Alzheimer Disease from Molecules- Regulating Microtubule Polymerization
从调节微管聚合的分子发现阿尔茨海默病的药物
  • 批准号:
    20228006
  • 财政年份:
    2008
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    2051731
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    6039291
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
Interdisciplinary Approach to Alzheimer Drug Discovery
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    7128137
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
Interdisciplinary Approach to Alzheimer Drug Discovery
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    7279295
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    3091356
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    6509572
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    6362209
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
Interdisciplinary Approach to Alzheimer Drug Discovery
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    7499700
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
INTERDISCIPLINARY APPROACH TO ALZHEIMER DRUG DISCOVERY
阿尔茨海默病药物发现的跨学科方法
  • 批准号:
    3091354
  • 财政年份:
    1991
  • 资助金额:
    $ 20.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了