Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways

民主化多组学加速发现隐藏的代谢途径

基本信息

  • 批准号:
    10633047
  • 负责人:
  • 金额:
    $ 26.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-28 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT There is a fundamental gap in our understanding of how metabolism changes in many diseases because we lack methods for high-throughput, unbiased discovery of indirect metabolite-protein connections. Continued ex- istence of this knowledge gap represents a major issue for public health and the mission of the NIH because, until it is filled, development of treatments for many diseases will remain largely intractable. Multi-omic analysis of proteomes and metabolomes from the same system offers a promising path to discover hidden metabolic pathways, but the requirement for human expert interpretation is a critical barrier that prevents complete value extraction from multi-omic experiments. The long-term goal of the Meyer Research Group at Medical College of Wisconsin is to reveal previously hidden metabolic pathways. The overall objective here, which is the first step in realizing this vision, is to democratize multi-omic data collection and data interpretation, thereby increasing the pace of metabolic pathway discovery. The central hypothesis is that artificial intelligence models can learn to draw new metabolic connections between metabolites and proteins. This hypothesis is based on preliminary data generated by the applicant and published literature, which shows how the strategy reveals known and new connections between metabolites and proteins. The rationale for the proposed research is that unbiased, data- driven discovery of new metabolic connections with AI algorithms (such as deep neural networks) will result in new and innovative therapeutic targets that can be manipulated positively or negatively to prevent or treat dis- ease. Guided by preliminary data and literature, this hypothesis will be tested by pursuing two complementary focus areas: (1) multi-omic data integration, and (2) multi-omic data collection. The multi-omic data integration focus uses AI models, already established as feasible in the applicant’s lab, to predict metabolite-protein inter- actions. AI models will be optimized with existing public data, models will be validated with newly collected data, and then novel metabolic connections will be validated using classic genetic and biochemical techniques. The second focus area builds new, fast methods for multi-omic data collection to feed data into AI models, starting from a recent advancement published by the applicant (Meyer et al., ChemRxiv 2020, accepted at Nature Meth- ods). The applicant’s lab will further develop this method to quantify the full yeast proteome, and also extend the method to enable multi-omic analysis on a single platform. This approach is innovative because it departs from the status quo of slow multi-omic data interpretation requiring expert humans by building and validating a new, automated AI method for metabolite pathway discovery. The multi-omic data collection focus is innovative be- cause it departs from the status quo of slow multi-omic data collection requiring multiple platforms and hours per sample by enabling unified multi-omic analysis in minutes. This contribution will be significant because ulti- mately, the knowledge, validated methods, and resource datasets generated by this project will open new hori- zons in drug development for diseases with altered metabolism, such as cancers and diabetes.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesse Meyer其他文献

Jesse Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jesse Meyer', 18)}}的其他基金

Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10470828
  • 财政年份:
    2022
  • 资助金额:
    $ 26.14万
  • 项目类别:
Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10798946
  • 财政年份:
    2022
  • 资助金额:
    $ 26.14万
  • 项目类别:
Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence
通过多组学和人工智能实现阿尔茨海默病药物发现
  • 批准号:
    10301220
  • 财政年份:
    2021
  • 资助金额:
    $ 26.14万
  • 项目类别:
Democratizing Multi-Omics to Expedite Discovery of Hidden Metabolic Pathways
民主化多组学加速发现隐藏的代谢途径
  • 批准号:
    10272870
  • 财政年份:
    2021
  • 资助金额:
    $ 26.14万
  • 项目类别:
Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence
通过多组学和人工智能实现阿尔茨海默病药物发现
  • 批准号:
    10473842
  • 财政年份:
    2021
  • 资助金额:
    $ 26.14万
  • 项目类别:
Drug Discovery for Alzheimer’s Disease Enabled by Multi-Omics and Artificial Intelligence
通过多组学和人工智能实现阿尔茨海默病药物发现
  • 批准号:
    10661394
  • 财政年份:
    2021
  • 资助金额:
    $ 26.14万
  • 项目类别:

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

NSF PRFB FY 2023: Multi-omics Assessment of Translocation Impacts on Sonoran Pronghorn
NSF PRFB 2023 财年:对索诺兰叉角羚易位影响的多组学评估
  • 批准号:
    2305938
  • 财政年份:
    2024
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Fellowship Award
Integrating subcellular multi-omics to identify druggable metabolic markers of latent HIV infection in CD4 T-cells
整合亚细胞多组学来识别 CD4 T 细胞中潜在 HIV 感染的可药物代谢标志物
  • 批准号:
    MR/Y013093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Research Grant
Investigating the role of prion-mediated epigenetic regulation in yeast using an integrative approach of multi-omics
使用多组学综合方法研究酵母中朊病毒介导的表观遗传调控的作用
  • 批准号:
    2332782
  • 财政年份:
    2024
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Establishment of multi-layered omics analysis for mitochondrial disease patients
线粒体疾病患者多层组学分析的建立
  • 批准号:
    23H00424
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Study of the mechanisms of lung cancer development through multi-omics analysis of normal tissues and precancerous lesions of the lung
通过肺部正常组织和癌前病变的多组学分析研究肺癌发生的机制
  • 批准号:
    23H02758
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
  • 批准号:
    2400785
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Multi-omics analysis on carotid artery stenosis for the biological mechanism of arteriosclerosis.
颈动脉狭窄的多组学分析动脉硬化的生物学机制。
  • 批准号:
    23K14718
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarifying Pathophysiology of Atrial Fibrillation by Tissue Multi-Omics Analysis of Atrial Myocardium
通过心房心肌的组织多组学分析阐明心房颤动的病理生理学
  • 批准号:
    23KJ0378
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-throughput in vivo and in vitro functional and multi-omics screens of neuropsychiatric and neurodevelopmental disorder risk genes
神经精神和神经发育障碍风险基因的高通量体内和体外功能和多组学筛选
  • 批准号:
    10643398
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
  • 批准号:
    10715962
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了