The Role of the Amino Acid Hypusine in the Maintenance and Function of Tissue-Resident Macrophages
氨基酸马尿苷在组织驻留巨噬细胞的维持和功能中的作用
基本信息
- 批准号:10656730
- 负责人:
- 金额:$ 53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdultAlveolarAmino AcidsBiologyBone MarrowBone TissueCellsCellular biologyCirculationColony-Stimulating Factor ReceptorsDataDevelopmentDiseaseEmbryoEnzymesFibrosisGATA6 transcription factorGene Expression ProfileGoalsGreater sac of peritoneumHealthHeartHematopoieticHomeostasisHuman PathologyHydroxylationImmuneImmunityKineticsKnowledgeLifeLungLysineMacrophageMaintenanceMalignant NeoplasmsMediatingMetabolismMusMyocardial InfarctionOrganPlayPolyaminesProcessPropertyProteinsPublishingResidenciesRoleRouteShapesSignal TransductionSpermidineT-LymphocyteTestingTimeTissuesTranscriptTranslationsTumor ImmunityTumor-associated macrophagesWorkYolk Sacbasecomparativedeoxyhypusinedeoxyhypusine monooxygenasedeoxyhypusine synthaseeIF-5Aenzyme substratefetalhypusineinsightmonocytepathogenprecursor cellprogenitorprogramsresponseself-renewaltranslation factortumor microenvironmentwound healing
项目摘要
Project Summary
Tissue-resident macrophages (TRMs) play fundamental roles in tissue homeostasis, immunity, and disease.
Thus, unlocking their biology is key to gaining a deeper knowledge of many human pathologies. TRMs are unique
from other hematopoietic cells, most of which are comparatively short-lived and continually replenished from the
bone marrow. Instead, TRMs form from yolk sac and fetal progenitors and persist into adult life through self-
renewal. Over time, and with kinetics specific to each tissue, these fetal-derived TRMs are replaced in most
tissues by bone marrow-derived monocytes, which may subsequently acquire a similar transcriptional profile to
their embryonic-derived counterparts. However, our understanding of universal factors that regulate TRMs
across tissues is limited. Cellular metabolism is one such factor that governs the differentiation trajectories of
various immune cell subsets, but how it shapes TRM differentiation, persistence, and function has yet to be
studied in detail. We previously identified polyamine metabolism, and its role in the synthesis of the amino acid
hypusine as a central axis governing macrophage metabolism and activation. We also showed that hypusine
synthesis directs the ability of T cells to take on distinct effector fates. These findings illuminated hypusine as a
focal coordinator of immune cell fate and effector programs. However, how hypusine contributes to tissue
immunity and TRM maintenance remains unknown. The sole protein to contain hypusine is the translation factor
eIF5A, in which a conserved lysine is enzymatically converted to hypusine in a two-step process via spermidine.
Hypusinated eIF5A promotes the translation of transcripts with specific sequence properties. Our goal in this
proposal is to gain deep understanding of TRM biology in homeostasis and disease by addressing hypusine
metabolism. Our central hypothesis is that hypusine regulates the differentiation of monocyte-derived cells into
TRMs and/or their maintenance in tissues, and that by targeting hypusine we can modulate macrophages to
benefit disease. We base this on our published work and striking preliminary data suggesting that hypusine
synthesis controls macrophage tissue-residency across multiple organs. Our approach will add new insight into
how short-lived precursor cells develop into long-lived TRMs that carry out functions essential for life. Importantly,
it will establish if hypusine synthesis is a tractable route to modulate TRMs in contexts where they influence
disease, such as with tumor-associated macrophages and cancer. We will test our central hypothesis by, 1)
investigating the role of hypusine synthesis in TRM formation and/or maintenance, 2) probing the mechanisms
through which hypusine governs macrophage tissue-residency, and 3) examining whether manipulating
hypusine synthesis in macrophages benefits anti-tumor immunity.
项目摘要
组织驻留巨噬细胞(TRM)在组织稳态、免疫和疾病中起着重要作用。
因此,解开他们的生物学是获得许多人类病理学更深入知识的关键。TRM是独一无二的
从其他造血细胞,其中大多数是相对短暂的,并不断补充,
骨髓相反,TRM由卵黄囊和胎儿祖细胞形成,并通过自我修复持续到成年。
退款随着时间的推移,并且随着每个组织的特定动力学,这些胎儿来源的TRM在大多数组织中被替换。
骨髓来源的单核细胞,随后可能获得类似的转录谱,
它们的胚胎衍生物。然而,我们对调节TRM的普遍因素的理解
跨组织的能力是有限的细胞代谢是一个这样的因素,其支配细胞的分化轨迹。
各种免疫细胞亚群,但它如何塑造TRM分化,持久性和功能还有待进一步研究。
详细研究我们以前确定了多胺代谢,及其在氨基酸合成中的作用,
羟腐胺赖氨酸作为控制巨噬细胞代谢和活化的中心轴。我们还发现羟腐胺赖氨酸
合成指导T细胞采取不同效应物命运的能力。这些发现阐明了羟腐胺赖氨酸作为一种
免疫细胞命运和效应程序的焦点协调员。然而,羟腐胺赖氨酸如何有助于组织
免疫和TRM维持仍然未知。含有羟腐胺赖氨酸的唯一蛋白质是翻译因子
eIF 5A,其中保守的赖氨酸通过亚精胺在两步过程中酶促转化为羟腐胺赖氨酸。
Hypusinated eIF 5A促进具有特定序列特性的转录物的翻译。我们的目标是
建议是通过解决羟腐胺赖氨酸来深入了解TRM生物学在稳态和疾病中的作用
新陈代谢.我们的中心假设是羟腐胺赖氨酸调节单核细胞衍生的细胞分化为
TRM和/或它们在组织中的维持,并且通过靶向羟腐胺赖氨酸,我们可以调节巨噬细胞,
有益于疾病。我们基于我们已发表的工作和惊人的初步数据,表明羟腐胺赖氨酸
合成控制跨多个器官的巨噬细胞组织驻留。我们的方法将增加新的洞察力,
短寿命的前体细胞如何发育成长寿命的TRM,执行生命所必需的功能。重要的是,
它将确定羟腐胺赖氨酸合成是否是调节TRM的易处理途径,
疾病,如与肿瘤相关的巨噬细胞和癌症。我们将测试我们的中心假设,1)
研究羟腐胺赖氨酸合成在TRM形成和/或维持中的作用,2)探索其机制
羟腐胺赖氨酸通过其控制巨噬细胞组织驻留,以及3)检查是否操纵
巨噬细胞中羟腐胺赖氨酸的合成有益于抗肿瘤免疫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erika L Pearce其他文献
Erika L Pearce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erika L Pearce', 18)}}的其他基金
Phosphorylation of TSC2 (S1365) as a novel Regulator of mTORC1 Signaling in T Cells
TSC2 (S1365) 磷酸化作为 T 细胞中 mTORC1 信号转导的新型调节剂
- 批准号:
10596567 - 财政年份:2021
- 资助金额:
$ 53万 - 项目类别:
Phosphorylation of TSC2 (S1365) as a novel Regulator of mTORC1 Signaling in T Cells
TSC2 (S1365) 磷酸化作为 T 细胞中 mTORC1 信号转导的新型调节剂
- 批准号:
10386765 - 财政年份:2021
- 资助金额:
$ 53万 - 项目类别:
TUMOR-IMPOSED GLUCOSE RESTRICTIONS ON T CELLS DAMPEN IMMUNITY
肿瘤对 T 细胞施加的葡萄糖限制会削弱免疫力
- 批准号:
8913080 - 财政年份:2014
- 资助金额:
$ 53万 - 项目类别:
TUMOR-IMPOSED GLUCOSE RESTRICTIONS ON T CELLS DAMPEN IMMUNITY
肿瘤对 T 细胞施加的葡萄糖限制会削弱免疫力
- 批准号:
9337389 - 财政年份:2014
- 资助金额:
$ 53万 - 项目类别:
TUMOR-IMPOSED GLUCOSE RESTRICTIONS ON T CELLS DAMPEN IMMUNITY
肿瘤对 T 细胞施加的葡萄糖限制会削弱免疫力
- 批准号:
9151813 - 财政年份:2014
- 资助金额:
$ 53万 - 项目类别:
TUMOR-IMPOSED GLUCOSE RESTRICTIONS ON T CELLS DAMPEN IMMUNITY
肿瘤对 T 细胞施加的葡萄糖限制会削弱免疫力
- 批准号:
8759445 - 财政年份:2014
- 资助金额:
$ 53万 - 项目类别:
Metabolic Regulation of CD8 T Cell Memory Development
CD8 T 细胞记忆发育的代谢调节
- 批准号:
8452685 - 财政年份:2011
- 资助金额:
$ 53万 - 项目类别:
Metabolic Regulation of CD8 T Cell Memory Development
CD8 T 细胞记忆发育的代谢调节
- 批准号:
8650256 - 财政年份:2011
- 资助金额:
$ 53万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 53万 - 项目类别:
Research Grant