A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
基本信息
- 批准号:10656297
- 负责人:
- 金额:$ 43.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-26 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmygdaloid structureAttentionBehavioralBiological MarkersBipolar DisorderBrainClinicalCognitionCognitiveCognitive ScienceComplexComputer AnalysisComputer ModelsComputing MethodologiesCorpus striatum structureCuesCustomDataData CollectionDepressed moodDeteriorationDiagnosisDimensionsDiseaseDissociationEventFeedbackFunctional Magnetic Resonance ImagingFunctional disorderGeneral PopulationHealthHumanInvestigationLearningLinkMajor Depressive DisorderMeasurableMeasuresMediatingMental DepressionModelingMood DisordersMoodsOnline SystemsOutcomeParticipantPathologicPathologyPatient Self-ReportPatientsPatternPopulationPrefrontal CortexPsychiatryPsychological reinforcementPunishmentQuestionnairesRegulationRewardsSamplingStimulusTestingUnipolar DepressionVentral StriatumWeightbipolar patientscognitive processcomputerized toolsdepressed patientdepressive symptomsdesignexperienceexperimental studyhypomaniaimprovedinsightinstrumentnegative moodneuralneural circuitneural correlatenovelpositive moodpredictive modelingreward processingsample fixationsimulationsuccesssymptomatologytheoriestrendvisual tracking
项目摘要
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
The relationship between mood and reward processing is bidirectional. On the one hand, mood is affected by the
experience of rewards and punishments, such that mood tends to improve after better-than-expected outcomes and
deteriorate after outcomes that are worse than expected. On the other hand, mood itself biases reward processing via its
effects on cognitive processes such as attention and reinforcement learning (RL). As such, pathological mood states in
mood disorders such as major depressive disorder and bipolar disorder may be the result of aberrant patterns of interaction
between mood, reward learning, and attention.
Recently, we and others have begun to use computational models to unravel the complex patterns of reciprocal interaction
between mood, reward learning, and attention (e.g., Eldar & Niv, 2015; Eldar et al., 2016). However, these models'
critical predictions regarding the neurocomputational substrates of mood disorders have not yet been tested.
In particular, we predict that bipolar disorder and major depression can be distinguished from one another at both a
behavioral and a neural level, in terms of different patterns of abnormal interaction between mood, RL, and attention.
Here, we propose to test this prediction using convergent methodologies from computational psychiatry including human
patient studies, large-scale online data collection and functional magnetic resonance imaging.
In Aim 1, we will test whether bipolar disorder and major depression are characterized by distinct patterns of
interaction between mood, RL, and attention. We will use behavioral experiments with two custom-designed tasks to
measure the strength of the mood-RL interaction and the mood-attention interaction, respectively. Computational models
will be fit to data from these tasks in both subjects with mood disorders and in matched controls. In Aim 2, we will assess
the utility of mood-RL and mood-attention interactions as markers of vulnerability to mood disorders in the
general population. We will use web-based data collection with the same two tasks as in Aim 1 to explore links between
mood-RL and mood-attention interactions and the subclinical expression of mood disorders in a general population
sample. Finally, in Aim 3 we will identify the neural circuits mediating the effect of mood on RL. We will acquire
fMRI data on the mood-RL task from healthy subjects and from patients with bipolar disorder and major depressive and
will use these data to describe the neurocomputational interactions of mood and reward in health and disease.
This project will use state-of-the-art tools from computational psychiatry to test and refine a neurocomputational model of
mood. Guided by the predictions of this model, we will assess patterns of interaction between mood, reinforcement
learning, and attention in three different contexts: a psychiatric behavioral sample, a large-scale online sample of the
general population, and a sample with fMRI data to help us assess the neural substrates of mood-cognition interactions.
Taken together, these aims will allow us to assess a neurocomputational model of mood that has the capacity to transform
the clinical understanding of mood disorders including bipolar disorder and major depression.
情绪对奖励学习和注意影响的计算精神病学研究
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effects of induced positive and negative affect on Pavlovian-instrumental interactions.
- DOI:10.1080/02699931.2022.2109600
- 发表时间:2022-11
- 期刊:
- 影响因子:2.6
- 作者:Weber, Isla;Zorowitz, Sam;Niv, Yael;Bennett, Daniel
- 通讯作者:Bennett, Daniel
Human Representation Learning.
- DOI:10.1146/annurev-neuro-092920-120559
- 发表时间:2021-07-08
- 期刊:
- 影响因子:13.9
- 作者:
- 通讯作者:
Affect-congruent attention modulates generalized reward expectations.
- DOI:10.1371/journal.pcbi.1011707
- 发表时间:2023-12
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
The challenges of lifelong learning in biological and artificial systems.
- DOI:10.1016/j.tics.2022.09.022
- 发表时间:2022-12
- 期刊:
- 影响因子:19.9
- 作者:Pisupati, Sashank;Niv, Yael
- 通讯作者:Niv, Yael
A model of mood as integrated advantage.
- DOI:10.1037/rev0000294
- 发表时间:2022-04
- 期刊:
- 影响因子:5.4
- 作者:Bennett D;Davidson G;Niv Y
- 通讯作者:Niv Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yael Niv其他文献
Yael Niv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yael Niv', 18)}}的其他基金
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10153745 - 财政年份:2020
- 资助金额:
$ 43.8万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10395963 - 财政年份:2020
- 资助金额:
$ 43.8万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 43.8万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10239260 - 财政年份:2020
- 资助金额:
$ 43.8万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10663070 - 财政年份:2020
- 资助金额:
$ 43.8万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10449368 - 财政年份:2019
- 资助金额:
$ 43.8万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10219795 - 财政年份:2019
- 资助金额:
$ 43.8万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10002301 - 财政年份:2019
- 资助金额:
$ 43.8万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9353368 - 财政年份:2016
- 资助金额:
$ 43.8万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9159875 - 财政年份:2016
- 资助金额:
$ 43.8万 - 项目类别:














{{item.name}}会员




