Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
基本信息
- 批准号:10395963
- 负责人:
- 金额:$ 28.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAffectAnimalsAreaBackBasal GangliaBayesian ModelingBehaviorBehavioralBehavioral MechanismsBehavioral ModelBrainCocaineCollaborationsComputer ModelsDataData SetDiseaseDopamineEventExposure toFunctional disorderFutureImpairmentImpulsivityInternationalJointsLearningLesionLinkMachine LearningNeuromodulatorNeuronsOdorsOutcomePatternPovertyProcessRattusReportingResearchRewardsRoleShapesSignal TransductionSourceStructureSystemTechniquesTestingTheoretical modelTimeUpdateVentral StriatumVentral Tegmental AreaWorkaddictionbasebrain circuitrycocaine exposurecognitive functioncomputer frameworkcostdopamine systemdrug of abuseexperiencefrontal lobeinnovationmachine learning methodneural circuitneural correlateneuromechanismneurophysiologyneuroregulationnovelprogramsrelating to nervous systemreward circuitrysynergismtheoriestool
项目摘要
Reward learning is a fundamental cognitive function, and the brain has a dedicated neuromodulatory
system – based on dopamine – that supports this process. Changes to the dopamine system that are
triggered by exposure to drugs of abuse are thought to underlie the behavioral changes observed in
addiction. Here we propose to use a treasure trove of previously recorded neural data from
throughout the mesocorticostriatal circuitry that supports reward learning, to elucidate the
computational role of each component of the circuit, their interactions, and how these components
are affected by cocaine.
Our brains constantly generate predictions about what rewards might be available, and compare
these predictions to actual outcomes. The neuromodulator dopamine is thought to report these
‘prediction error’ signals, the result of the ongoing comparison between expected and obtained
rewards, that are key to updating predictions so they are more accurate in the future. Predicting the
timing of rewards, and not just their identity or value, is an important component of this process, but it
remains a mystery how the brain forms and uses predictions about time in reward learning.
Based on a novel theoretical model we recently developed, we will test the computational role of
three key brain areas that comprise the brain circuit critical for reward learning, using a state-of-the-
art methods from machine learning to jointly decode the learning processes that drive neural activity
from multiple brain areas along with behavior as rats perform a reward learning task. In Aim 1, we
hypothesize that neural activity in the orbitofrontal cortex is uniquely important for representing high
level ‘task states’ and will test for patterns in OFC neural activity that follow the hidden structure of the
task. In Aim 2, we will decode the representation of reward predictions about the amount and timing
of rewards, and test whether they are separable in VS neural activity. In Aim 3, we will test how
activity in VS and OFC controls dopamine activity, and in particular how each input component
enables prediction errors to be temporally precise. In Aim 4, we will test how exposure to cocaine
changes neural activity that represents reward predictions in the VS, and the impact of this disruption
on dopamine prediction errors in the VTA.
This innovative multi-level study will leverage numerous existing neural and behavioral data from rats
performing a well-validated reward-learning task, to reveal the computational, neural and behavioral
mechanisms of the reward prediction and learning circuitry in the brain, and the source of their
disruption in addiction.
奖励学习是一种基本的认知功能,大脑有一个专门的神经调节系统,
基于多巴胺的系统支持这一过程。多巴胺系统的变化
暴露于滥用药物引发的行为改变被认为是在
成瘾在这里,我们建议使用以前记录的神经数据宝库,
在支持奖励学习的中皮质纹状体回路中,
电路的每个组件的计算角色,它们的相互作用,以及这些组件如何
受到可卡因的影响。
我们的大脑不断地产生关于可能获得的奖励的预测,
这些预测到实际结果。神经调节剂多巴胺被认为是报告这些
“预测误差”信号,预期和获得之间的持续比较的结果
奖励,这是更新预测的关键,因此它们在未来更准确。预测
奖励的时机,而不仅仅是他们的身份或价值,是这个过程的重要组成部分,但它
大脑如何在奖励学习中形成和使用关于时间的预测仍然是一个谜。
基于我们最近开发的一个新的理论模型,我们将测试
三个关键的大脑区域,包括大脑回路的关键奖励学习,使用的状态-
机器学习的艺术方法,共同解码驱动神经活动的学习过程
从多个大脑区域沿着与行为作为大鼠执行奖励学习任务。目标1:
假设眶额皮质神经活动对于代表高血压是非常重要的,
水平的“任务状态”,并将测试OFC神经活动的模式,遵循隐藏的结构,
任务在目标2中,我们将解码奖励预测的表示,
奖励,并测试它们是否在VS神经活动中是可分离的。在目标3中,我们将测试如何
VS和OFC中的活动控制多巴胺的活动,特别是每个输入成分
使得预测误差在时间上精确。在目标4中,我们将测试接触可卡因
改变代表VS中奖励预测的神经活动,以及这种中断的影响
关于腹侧被盖区多巴胺预测错误的研究
这项创新的多层次研究将利用大量现有的大鼠神经和行为数据
执行一个有效的奖励学习任务,以揭示计算,神经和行为
大脑中的奖励预测和学习电路的机制,以及它们的来源。
成瘾的破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yael Niv其他文献
Yael Niv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yael Niv', 18)}}的其他基金
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 28.35万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10153745 - 财政年份:2020
- 资助金额:
$ 28.35万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10239260 - 财政年份:2020
- 资助金额:
$ 28.35万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10663070 - 财政年份:2020
- 资助金额:
$ 28.35万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10656297 - 财政年份:2019
- 资助金额:
$ 28.35万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10449368 - 财政年份:2019
- 资助金额:
$ 28.35万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10219795 - 财政年份:2019
- 资助金额:
$ 28.35万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10002301 - 财政年份:2019
- 资助金额:
$ 28.35万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9353368 - 财政年份:2016
- 资助金额:
$ 28.35万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9159875 - 财政年份:2016
- 资助金额:
$ 28.35万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Studentship














{{item.name}}会员




