Random Shear Shuttle BAC Libraries for Antimicrobial Discovery from Soil Metageno
用于从土壤 Metageno 中发现抗菌剂的随机剪切穿梭 BAC 文库
基本信息
- 批准号:7801784
- 负责人:
- 金额:$ 16.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:Anti-Bacterial AgentsAntibioticsAntifungal AgentsAntiviral AgentsBacterial InfectionsBiological AssayChemical StructureChemicalsClinicalCloningCollectionCopyrightCustomDNADevelopmentEnvironmentEscherichia coliEukaryotic CellGeneticGenomicsGenotypeHarvestLaboratoriesLeadLibrariesLifeMediatingMetagenomicsMethodologyMethodsModern History (Medicine)Molecular WeightMulti-Drug ResistancePathway interactionsPhaseProbabilityProtocols documentationPseudomonas putidaRecombinantsRelative (related person)ResearchResearch ProposalsResistanceResourcesSalesSamplingScienceScientistScreening procedureServicesShuttle VectorsSmall Business Innovation Research GrantSoilSourceStructureTechnologyTestingTimeToxic effectUnited States National Institutes of HealthUniversitiesYeastsantimicrobialantimicrobial drugbasecommercializationdenaturing gradient gel electrophoresisexpression cloningimprovedinnovationmethicillin resistant Staphylococcus aureusmicrobialmicrobial communitymicroorganismnext generationnovelpathogenpublic health relevancesmall moleculesoil samplingsuccessvector
项目摘要
DESCRIPTION (provided by applicant): There is societal need for new antibiotic compounds in our arsenal of defenses against bacterial pathogens, many of which are increasingly resistant to existing antibiotics. The best possible source for new antibiotic structures with potentially novel mechanisms of action is within natural environments, particularly soils, which have the greatest diversity of microbial life. This research proposal advances the science of metagenomics, the cloning of DNA from entire microbial communities, to discover novel antibiotics and identify the best lead candidates for clinical development. Scientists at the Lucigen Corporation and at Auburn University are uniting four key technological breakthroughs that together will result in the next generation of metagenomic libraries, a resource with greatly enhanced potential for antibiotic discovery. Specifically, the proposed research will identify antibiotic compounds using 1) an improved methodology for the isolation and purification of high molecular weight genomic DNA from soil microorganisms; 2) a novel broad host range shuttle vector for enhanced expression of cloned DNAs; 3) a random shear cloning method to produce very large insert sizes (>100 kb); and 4) a rapid and improved screening method to identify antibiotic-producing clones within a metagenomic library. The primary Phase I objectives are to produce the proof-of-concept next generation metagenomic library using the above technologies and to screen this library against bacterial and yeast tester strains to generate a collection of antibiotic- producing clones. Phase II will build upon the success of Phase I by constructing additional metagenomic libraries from multiple environmental samples, screening these libraries for antimicrobial activity, and, most importantly, characterizing the antimicrobial agents identified in Phase I and Phase II to determine the best lead candidates for clinical development. Lead candidates will have novel chemical structures, have high potency against multiple bacterial pathogens (e.g., MRSA), and minimal toxicity for eukaryotic cells. Each of the different technologies necessary for the proposed research has been proven effective separately; therefore, the synthesis of these different methods has a high probability of success and also represents a significant advancement for the science of antibiotic discovery. Furthermore, the libraries produced from this research are a valuable genomic resource that may be screened for other bioactive compounds (e.g., with anticancer or antiviral activities) in subsequent research.
PUBLIC HEALTH RELEVANCE: The use of antibiotics to treat bacterial disease has been a success story in the history of modern medicine, and yet there is still a need to identify new antibiotics that can treat bacterial infections, particularly ones caused by multi-drug resistant pathogens. This research will combine four different technological breakthroughs to enable antibiotic discovery from microorganisms in natural environments (e.g., soils) by harvesting and expressing their genetic pathways directly, without the need to cultivate the different microorganisms in a laboratory. In this way, this technology will access the antibiotics produced by a great diversity of microorganisms, many of which are unknown to science, and will identify the best novel antibiotic compounds for use in treating bacterial disease.
描述(由申请人提供):在我们的细菌病原体防御武器库中,社会需要新的抗生素化合物,其中许多对现有抗生素的耐药性越来越强。具有潜在新型作用机制的新型抗生素结构的最佳可能来源是自然环境,特别是土壤,其中微生物生命的多样性最大。这项研究提案推进了宏基因组学的科学,即从整个微生物群落中克隆DNA,以发现新型抗生素并确定临床开发的最佳候选药物。Lucigen公司和奥本大学的科学家正在联合四项关键技术突破,这些突破将共同产生下一代宏基因组文库,这是一种具有极大增强的抗生素发现潜力的资源。具体而言,拟议的研究将使用以下方法鉴定抗生素化合物:1)从土壤微生物中分离和纯化高分子量基因组DNA的改进方法; 2)用于增强克隆DNA表达的新型宽宿主范围穿梭载体; 3)产生非常大插入片段(>100 kb)的随机剪切克隆方法;和4)一种快速且改进的筛选方法来鉴定宏基因组库中产生抗生素的克隆。第I阶段的主要目标是使用上述技术产生概念验证的下一代宏基因组文库,并针对细菌和酵母试验菌株筛选该文库以产生抗生素生产克隆的集合。第二阶段将在第一阶段成功的基础上,从多个环境样本中构建额外的宏基因组文库,筛选这些文库的抗菌活性,最重要的是,表征第一阶段和第二阶段确定的抗菌剂,以确定临床开发的最佳候选药物。先导候选物将具有新颖的化学结构,对多种细菌病原体(例如,MRSA),并且对真核细胞的毒性最小。所提出的研究所需的每种不同技术都已被证明是有效的;因此,这些不同方法的合成具有很高的成功概率,也代表了抗生素发现科学的重大进步。此外,从该研究产生的文库是有价值的基因组资源,其可以筛选其他生物活性化合物(例如,具有抗癌或抗病毒活性)。
公共卫生关系:使用抗生素治疗细菌性疾病在现代医学史上是一个成功的故事,但仍然需要确定可以治疗细菌感染的新抗生素,特别是由多重耐药病原体引起的细菌感染。这项研究将结合联合收割机四种不同的技术突破,使抗生素发现从微生物在自然环境中(例如,土壤),而不需要在实验室中培养不同的微生物。通过这种方式,该技术将获得由多种微生物产生的抗生素,其中许多是科学未知的,并将确定用于治疗细菌性疾病的最佳新型抗生素化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengcang Charles Wu其他文献
Chengcang Charles Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengcang Charles Wu', 18)}}的其他基金
A Platform to Identify Antifungal Compounds with Novel Action Mechanisms
鉴定具有新颖作用机制的抗真菌化合物的平台
- 批准号:
10760421 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 16.47万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10657805 - 财政年份:2022
- 资助金额:
$ 16.47万 - 项目类别:
A robust heterologous expression system of intact fungal secondary metabolite gene clusters for natural product discovery in Aspergillus nidulans
完整真菌次生代谢物基因簇的强大异源表达系统,用于构巢曲霉天然产物的发现
- 批准号:
9120977 - 财政年份:2016
- 资助金额:
$ 16.47万 - 项目类别:
Expanding small molecule functional metagenomics through shuttle BAC expression i
通过穿梭 BAC 表达扩展小分子功能宏基因组
- 批准号:
8123947 - 财政年份:2011
- 资助金额:
$ 16.47万 - 项目类别:
New Strategies for De Novo Sequencing of Daunting Genomes
令人畏惧的基因组从头测序的新策略
- 批准号:
8001158 - 财政年份:2010
- 资助金额:
$ 16.47万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 16.47万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Studentship














{{item.name}}会员




