Genome editing of human pancreatic islets to withstand ischemic injuries and promote immune evasion

人类胰岛的基因组编辑以抵抗缺血性损伤并促进免疫逃避

基本信息

项目摘要

ABSTRACT In this proposal we apply somatic cell gene editing strategies to enhance pancreatic beta cell replacement therapies for type 1 diabetes (T1D). We have formed a team that combines expertise in beta cell biology, synthetic and systems biology, and islet transplant immunology to address key impediments for efficient immunosuppression-free transplantation of pancreatic islets. We propose two orthogonal yet complementary aims to address two critical challenges in islet transplantation - islet survival and immune rejection. Most of the transplanted islets die before revascularization can occur, which limits the efficacy of the therapy. We have shown hypoxia and nutrient deprivation during ischemia independently and synergistically kill transplanted islet cells. Aim 1 of this proposal addresses the hypothesis that peri-transplant death can be alleviated by deleting negative regulators of beta cell survival or by over-expression of positive regulators. We will take both targeted and unbiased approaches to test candidate regulators and to identify novel regulators of human islet survival. Our team has already performed high-throughput screens using RNAi in primary human islets using in vivo transplant survival as a readout. We are ready to apply our expertise to CRISPRi and cDNA screens of primary human islets. Previous clinical islet transplant experiences show that stronger immunosuppression is associated with higher rate of insulin independence after islet transplantation. The immune system deploys multiple redundant mechanisms to eliminate transplanted foreign tissue. This, combined with the fragility of the transplanted islets and heightened immune functions in T1D recipients, forms a formidable immunological barrier to beta cell replacement therapy. We hypothesize that multipronged approach of minimizing islet cell immunogenicity, neutralizing inflammation in the graft, and blocking cellular infiltrate will shield the islets from immune rejection without the need for systemic immunosuppression. In Aim2, we will test this hypothesis by gene edit human islets to ablate the expression of polymorphic human leukocyte antigens. We will test dominant strategies that block innate inflammatory cytokines TNF, IL-1 and type 1 and type 2 interferons. We will also target adaptive immune cells by blocking their trafficking, activation and effector function. Successful confirmation of our hypotheses will provide proof-of-principle data to support efforts of clinical translation as next steps. We envision that these strategies may be applied to primary human islets, stem cell-derived beta cells, and even xenogeneic islets. While these CRISPR modalities are powerful research tools for screens and proof- of-concept experiments in the laboratory, base editing and/or prime editing may be preferred embodiments in the clinical setting. Our end goal is to generate game-changing strategies to address these key impediments, with a vision towards clinical translation.
摘要 在这项提案中,我们应用体细胞基因编辑策略来增强胰腺β细胞替代 1型糖尿病(T1 D)的治疗。我们组建了一个团队,结合了β细胞生物学的专业知识, 合成和系统生物学,以及胰岛移植免疫学,以解决有效 无免疫抑制的胰岛移植。我们提出了两个正交但互补的 旨在解决胰岛移植中的两个关键挑战-胰岛存活和免疫排斥。大部分 移植的胰岛在血管再生发生之前死亡,这限制了治疗的功效。我们有 在局部缺血期间显示缺氧和营养剥夺独立地和协同地杀死移植的胰岛 细胞该提案的目的1提出了这样的假设,即通过删除 β细胞存活的负调节因子或正调节因子的过表达。我们会把这两个目标 以及测试候选调节剂和鉴定人胰岛存活的新调节剂的无偏方法。 我们的团队已经在原代人类胰岛中使用RNAi进行了高通量筛选, 移植存活率作为读数。我们已经准备好将我们的专业知识应用于CRISPRi和cDNA筛选, 人类的小岛以往的临床胰岛移植经验表明,较强的免疫抑制与 胰岛移植后胰岛素非依赖率高。免疫系统会部署多个 多余的机制来消除移植的外来组织。这一点,加上脆弱的 移植的胰岛和T1 D受体的免疫功能增强,形成了强大的免疫屏障 贝塔细胞替代疗法我们假设,减少胰岛细胞的多管齐下的方法, 免疫原性、中和移植物中的炎症和阻断细胞浸润将保护胰岛免受 免疫排斥而不需要全身性免疫抑制。在Aim 2中,我们将通过以下方式来验证这一假设: 基因编辑人类胰岛以消除多态性人类白细胞抗原的表达。我们将测试显性 阻断先天性炎性细胞因子TNF、IL-1和1型和2型干扰素的策略。我们还将 通过阻断其运输、激活和效应器功能靶向适应性免疫细胞。成功 我们的假设的确认将提供原则性数据证明,以支持临床翻译的努力, 步我们设想这些策略可以应用于原代人类胰岛、干细胞衍生的β细胞, 甚至异种胰岛。虽然这些CRISPR模式是筛选和证明的强大研究工具, 在实验室中的概念实验中,基础编辑和/或主要编辑可以是优选的实施例。 临床设置。我们的最终目标是制定改变游戏规则的战略,以解决这些关键障碍, 致力于临床翻译

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Michael Ku其他文献

Gregory Michael Ku的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Michael Ku', 18)}}的其他基金

Genome editing of human pancreatic islets to withstand ischemic injuries and promote immune evasion
人类胰岛的基因组编辑以抵抗缺血性损伤并促进免疫逃避
  • 批准号:
    10504937
  • 财政年份:
    2022
  • 资助金额:
    $ 68.64万
  • 项目类别:
Creating a mouse and human model of a novel monogenic diabetes syndrome
创建新型单基因糖尿病综合征的小鼠和人类模型
  • 批准号:
    10452292
  • 财政年份:
    2022
  • 资助金额:
    $ 68.64万
  • 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
  • 批准号:
    10316987
  • 财政年份:
    2020
  • 资助金额:
    $ 68.64万
  • 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
  • 批准号:
    10538551
  • 财政年份:
    2020
  • 资助金额:
    $ 68.64万
  • 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
  • 批准号:
    9888159
  • 财政年份:
    2020
  • 资助金额:
    $ 68.64万
  • 项目类别:
Uncovering Two Novel Diabetes Drug Targets in the IDG
IDG 发现两种新型糖尿病药物靶点
  • 批准号:
    9813755
  • 财政年份:
    2019
  • 资助金额:
    $ 68.64万
  • 项目类别:
The role of Spry2 in beta cell function and the unfolded protein response
Spry2 在 β 细胞功能和未折叠蛋白反应中的作用
  • 批准号:
    9181412
  • 财政年份:
    2015
  • 资助金额:
    $ 68.64万
  • 项目类别:
A novel, beta cell specific regulator of the insulin promoter
胰岛素启动子的新型β细胞特异性调节剂
  • 批准号:
    8768867
  • 财政年份:
    2014
  • 资助金额:
    $ 68.64万
  • 项目类别:
A novel, beta cell specific regulator of the insulin promoter
胰岛素启动子的新型β细胞特异性调节剂
  • 批准号:
    8853279
  • 财政年份:
    2014
  • 资助金额:
    $ 68.64万
  • 项目类别:
Discovering and dissecting new regulators of insulin production in beta cells
发现并剖析β细胞中胰岛素产生的新调节因子
  • 批准号:
    8662758
  • 财政年份:
    2011
  • 资助金额:
    $ 68.64万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了