Genome editing of human pancreatic islets to withstand ischemic injuries and promote immune evasion
人类胰岛的基因组编辑以抵抗缺血性损伤并促进免疫逃避
基本信息
- 批准号:10504937
- 负责人:
- 金额:$ 68.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBeta CellBlood VesselsCD28 geneCRISPR interferenceCell DeathCell SurvivalCellsCellular StressCellular biologyCessation of lifeChronicClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplementary DNADataEngineeringEngraftmentEnvironmentGenesGenetic EngineeringGlucoseGoalsHLA AntigensHistocompatibility Antigens Class IHumanHypoxiaIFNAR1 geneImmuneImmune EvasionImmune responseImmune systemImmunocompetentImmunologicsImmunosuppressionInbred NOD MiceIndividualInflammationInflammatoryInsulinInsulin-Dependent Diabetes MellitusInterferonsInterleukin-1InterventionIschemiaIslet CellIslets of LangerhansIslets of Langerhans TransplantationKnowledgeLaboratoriesLeadLeucocytic infiltrateLifeMediatingMetabolicModalityNatural regenerationPancreasPathway interactionsRNA InterferenceRNA interference screenResearchRiskScreening procedureSecondary toStressStructure of beta Cell of isletSystems BiologyTNF geneTNFRSF1A geneTestingTissuesToxic effectTransplantationTransplantation ImmunologyTreatment EfficacyVascular blood supplyVisionWorkantagonistarmbase editingbeta cell replacementcell replacement therapyclinical translationcurative treatmentscytokineefficacy testingexperienceexperimental studygenome editinghigh throughput screeninghumanized mouseimmune functionimmunogenicimmunogenicityimprovedin vivointercellular cell adhesion moleculeischemic injuryisletislet stem cellsmouse modelnovelnutrient deprivationoverexpressionprime editingsomatic cell gene editingsynthetic biologytraffickingvascular bed
项目摘要
ABSTRACT
In this proposal we apply somatic cell gene editing strategies to enhance pancreatic beta cell replacement
therapies for type 1 diabetes (T1D). We have formed a team that combines expertise in beta cell biology,
synthetic and systems biology, and islet transplant immunology to address key impediments for efficient
immunosuppression-free transplantation of pancreatic islets. We propose two orthogonal yet complementary
aims to address two critical challenges in islet transplantation - islet survival and immune rejection. Most of the
transplanted islets die before revascularization can occur, which limits the efficacy of the therapy. We have
shown hypoxia and nutrient deprivation during ischemia independently and synergistically kill transplanted islet
cells. Aim 1 of this proposal addresses the hypothesis that peri-transplant death can be alleviated by deleting
negative regulators of beta cell survival or by over-expression of positive regulators. We will take both targeted
and unbiased approaches to test candidate regulators and to identify novel regulators of human islet survival.
Our team has already performed high-throughput screens using RNAi in primary human islets using in vivo
transplant survival as a readout. We are ready to apply our expertise to CRISPRi and cDNA screens of primary
human islets. Previous clinical islet transplant experiences show that stronger immunosuppression is associated
with higher rate of insulin independence after islet transplantation. The immune system deploys multiple
redundant mechanisms to eliminate transplanted foreign tissue. This, combined with the fragility of the
transplanted islets and heightened immune functions in T1D recipients, forms a formidable immunological barrier
to beta cell replacement therapy. We hypothesize that multipronged approach of minimizing islet cell
immunogenicity, neutralizing inflammation in the graft, and blocking cellular infiltrate will shield the islets from
immune rejection without the need for systemic immunosuppression. In Aim2, we will test this hypothesis by
gene edit human islets to ablate the expression of polymorphic human leukocyte antigens. We will test dominant
strategies that block innate inflammatory cytokines TNF, IL-1 and type 1 and type 2 interferons. We will also
target adaptive immune cells by blocking their trafficking, activation and effector function. Successful
confirmation of our hypotheses will provide proof-of-principle data to support efforts of clinical translation as next
steps. We envision that these strategies may be applied to primary human islets, stem cell-derived beta cells,
and even xenogeneic islets. While these CRISPR modalities are powerful research tools for screens and proof-
of-concept experiments in the laboratory, base editing and/or prime editing may be preferred embodiments in
the clinical setting. Our end goal is to generate game-changing strategies to address these key impediments,
with a vision towards clinical translation.
抽象的
在这项提案中,我们应用体细胞基因编辑策略来增强胰腺β细胞的替代
1 型糖尿病 (T1D) 的治疗方法。我们组建了一支结合了 β 细胞生物学专业知识的团队,
合成生物学和系统生物学以及胰岛移植免疫学,以解决高效的关键障碍
无免疫抑制的胰岛移植。我们提出两个正交但互补的
旨在解决胰岛移植中的两个关键挑战——胰岛存活和免疫排斥。大部分的
移植的胰岛在血运重建之前就死亡,这限制了治疗的效果。我们有
显示缺血期间的缺氧和营养缺乏独立和协同地杀死移植的胰岛
细胞。该提案的目标 1 提出了这样的假设:通过删除可以减轻围移植期死亡
β细胞存活的负调节因子或通过正调节因子的过度表达。我们将有针对性地采取
和公正的方法来测试候选调节剂并确定人类胰岛存活的新调节剂。
我们的团队已经在体内使用 RNAi 在原代人类胰岛中进行了高通量筛选
移植存活率作为读数。我们已准备好将我们的专业知识应用于初级基因的 CRISPRi 和 cDNA 筛选
人类的胰岛。既往临床胰岛移植经验表明更强的免疫抑制与之相关
胰岛移植后胰岛素依赖率较高。免疫系统会部署多种
消除移植的外来组织的冗余机制。这与脆弱性相结合
T1D 受体移植的胰岛和增强的免疫功能形成了强大的免疫屏障
β细胞替代疗法。我们假设减少胰岛细胞的多管齐下的方法
免疫原性、中和移植物中的炎症并阻止细胞浸润将保护胰岛免受
无需全身免疫抑制即可产生免疫排斥反应。在 Aim2 中,我们将通过以下方式检验这个假设:
基因编辑人类胰岛以消除多态性人类白细胞抗原的表达。我们将测试主导
阻断先天炎症细胞因子 TNF、IL-1 以及 1 型和 2 型干扰素的策略。我们还将
通过阻断适应性免疫细胞的运输、激活和效应功能来靶向适应性免疫细胞。成功的
我们的假设的确认将为下一步的临床转化工作提供原理验证数据
步骤。我们设想这些策略可以应用于原代人类胰岛、干细胞衍生的β细胞、
甚至异种胰岛。虽然这些 CRISPR 模式是用于筛选和证明的强大研究工具-
实验室中的概念实验、碱基编辑和/或引物编辑可能是优选的实施方案
临床环境。我们的最终目标是制定改变游戏规则的策略来解决这些关键障碍,
具有临床转化的愿景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Michael Ku其他文献
Gregory Michael Ku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Michael Ku', 18)}}的其他基金
Genome editing of human pancreatic islets to withstand ischemic injuries and promote immune evasion
人类胰岛的基因组编辑以抵抗缺血性损伤并促进免疫逃避
- 批准号:
10657743 - 财政年份:2022
- 资助金额:
$ 68.64万 - 项目类别:
Creating a mouse and human model of a novel monogenic diabetes syndrome
创建新型单基因糖尿病综合征的小鼠和人类模型
- 批准号:
10452292 - 财政年份:2022
- 资助金额:
$ 68.64万 - 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
- 批准号:
10316987 - 财政年份:2020
- 资助金额:
$ 68.64万 - 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
- 批准号:
10538551 - 财政年份:2020
- 资助金额:
$ 68.64万 - 项目类别:
The role of mitochondrial fission in beta cell function
线粒体裂变在 β 细胞功能中的作用
- 批准号:
9888159 - 财政年份:2020
- 资助金额:
$ 68.64万 - 项目类别:
Uncovering Two Novel Diabetes Drug Targets in the IDG
IDG 发现两种新型糖尿病药物靶点
- 批准号:
9813755 - 财政年份:2019
- 资助金额:
$ 68.64万 - 项目类别:
The role of Spry2 in beta cell function and the unfolded protein response
Spry2 在 β 细胞功能和未折叠蛋白反应中的作用
- 批准号:
9181412 - 财政年份:2015
- 资助金额:
$ 68.64万 - 项目类别:
A novel, beta cell specific regulator of the insulin promoter
胰岛素启动子的新型β细胞特异性调节剂
- 批准号:
8768867 - 财政年份:2014
- 资助金额:
$ 68.64万 - 项目类别:
A novel, beta cell specific regulator of the insulin promoter
胰岛素启动子的新型β细胞特异性调节剂
- 批准号:
8853279 - 财政年份:2014
- 资助金额:
$ 68.64万 - 项目类别:
Discovering and dissecting new regulators of insulin production in beta cells
发现并剖析β细胞中胰岛素产生的新调节因子
- 批准号:
8662758 - 财政年份:2011
- 资助金额:
$ 68.64万 - 项目类别:
相似海外基金
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 68.64万 - 项目类别:
Sustaining functional maturity of pancreatic beta cell through nutritional control
通过营养控制维持胰腺β细胞的功能成熟
- 批准号:
23H03304 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Beta cell rest を目指した新たな2型糖尿病治療法の確立
建立针对 β 细胞休息的新型 2 型糖尿病治疗方法
- 批准号:
23K07959 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graft localized drug delivery to augment beta cell replacement therapies for diabetes
移植局部药物递送以增强糖尿病的β细胞替代疗法
- 批准号:
480374 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Operating Grants
PITPNA in pancreatic beta-cell dysfunction and diabetes pathogenesis
PITPNA 在胰腺 β 细胞功能障碍和糖尿病发病机制中的作用
- 批准号:
10636228 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
The Influence of Developmental Exposure to Maternal Overnutrition and Metformin on Offspring Mitochondrial Health and Beta Cell Function
发育期暴露于母亲营养过剩和二甲双胍对后代线粒体健康和 β 细胞功能的影响
- 批准号:
10601500 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
New strategies in cell replacement therapies for diabetes: role of USP7 in iPSC and adult organoids beta cell differentiation
糖尿病细胞替代疗法的新策略:USP7 在 iPSC 和成体类器官 β 细胞分化中的作用
- 批准号:
MR/X01813X/1 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Research Grant
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
- 批准号:
10637032 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别:
Development of platforms for beta cell-specific delivery and ligand discovery
开发β细胞特异性递送和配体发现平台
- 批准号:
10738505 - 财政年份:2023
- 资助金额:
$ 68.64万 - 项目类别: